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1.0 EXECUTIVE SUMMARY

As a part of a program of ongoing research and technology development activities in

the Controls-Structures Integration (CSI) technology area, the NASA Langley

Research Center (NASA/LaRC) initiated the design and fabrication of the CSI

Evolutionary Model (CEM) in 1990 to provide a testbed for the development,

implementation, and validation of CSI technology and associated hardware and

software. Since that time, the CEM has evolved from the Phase-0 through the Phase-1

and Phase-2 configurations (designated CEM1 and CEM2) in support of integrated

CSI design, pointing, jitter, disturbance rejection, isolation, and distributed control

experiments. The CEM has also been used in the development of associated ground

test techniques, including advanced zero-g suspension systems, actuators, sensors,

and precision pointing optical scoring systems.

This report describes the configuration and structural development effort for the

evolution of the CEM2 testbed into the new CEM Phase-3 (CEM3) configuration

performed under Contract NAS1-19241 to NASA/LaRC. This evolutionary step

responds to the need to develop and test CSI technologies associated with typical

planned earth science and remote sensing platforms, such as the eight-satellite Earth

Observing System (EOS), Defense Meteorological Satellite Program/National Oceanic

and Atmospheric Administration (DMSP/NOAA) weather satellites, LandSat, and

others. The EOS spacecraft series is of particular interest in that the CEM3 testbed will

be used to support system identification and CSI technology development

experiments that may fly on the EOS AM-1 spacecraft, as part of the Jitter Attenuation

and Dynamics Experiment (JADE).

1.1 BACKGROUND AND APPROACH

The primary objective of the CEM3 testbed development is to reconfigure the

components of the existing CEM2 testbed (Figure 1-1) in order to simulate the overall

on-orbit dynamic behavior of a typical earth science and remote sensing platform,

namely the EOS AM-1 spacecraft (Figure 1-2). Key elements of the objective outlined

by NASA/LaRC include approximating the overall geometry of the EOS AM-1

spacecraft and simulating the low-frequency solar array (SA) and high gain antenna

(HGA) appendage dynamic interaction. Like the CEM2 testbed, the CEM3 design is to

be erectable, allowing for the changeout of testbed components associated with

different CSI experiments. It will also be suspended from cables attached to

suspension devices for the simulation of the free-free zero-g spacecraft environment.
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Figure 1-2. EOS AM-1 On-Orbit Configuration (Isometric and Side Views)
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The following guidelines were provided by NASA/LaRC for the accomplishment of the

CEM3 design objectives:

(a) Use the existing CEM2 hardware - develop a minimum of new hardware
at minimal cost.

(b) Use existing suspension system hardware which is capable of supporting

up to 2,000 pounds in the Building 1293A test facility.

(c) Approximate the overall size, shape, and dynamics of the EOS AM-1

spacecraft to as near full-scale as practicable.

(d) Use existing finite element models and EOS AM-1 data provided by NASA.

(e) Assemble the testbed for suspension in Building 1293A within five months.

The existing CEM2 testbed hardware consisted of approximately 1,900 aluminum

truss struts assembled in 10-inch bays, a 15-foot deployable solar array mast and tip

weight, three 2-axis gimbaled instrument simulators, and associated control sensors

(inertial reference units) and actuators (gas-jet thrusters). Reconfiguring this hardware

provides a new ground testbed at minimal cost.

The baseline EOS AM-1 spacecraft weighs nearly 10,500 pounds at end-of-life (Figure

1-2). The bus structure is composed of a graphite/epoxy truss that is approximately 21

feet long and 6 feet wide. Five science instruments and a full complement of

spacecraft subsystem boxes are supported on graphite/epoxy sandwich panels

attached to the truss. Two large, flexible appendages are attached to the bus: a

29.3-foot solar array and an 8.3-foot high gain antenna. These appendages have four

important modes in the 0.3 - 0.7 Hz range, corresponding to the first bending modes of

both appendages about each bending axes. Further information on the baseline EOS

AM-1 spacecraft is provided in Section 2.1.

The approach to meeting the CEM3 testbed objectives required a highly iterative

analysis, design, and development process. Apart from the limitations associated with

using the existing CEM2 components, the most difficult challenges included (1)

simulating the low-frequency appendage interaction in the 1-g laboratory environment,

(2) achieving a testbed weight within the 2,000 pound capability of the suspension

system, and (3) designing the scaled SA and HGA appendages to meet the

appendage dynamic interaction requirements.

The approach to simulating the SA and HGA appendage dynamic interaction is based

on matching the fundamental parameters in the open-loop structural frequency

response functions (FRF's) which relate responses at the spacecraft sensors due to

torque inputs from the actuators. The key parameters are the spacecraft inertias, the
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appendage modal frequencies, damping values, and structural gains (Kb's); and the

frequency of the first spacecraft bus system mode. The design goal was to match the

open-loop FRF's of the suspended CEM3 testbed with those of the EOS AM-1

spacecraft, as discussed in Section 2.2.

To meet the objective of simulating the overall dynamic characteristics of EOS AM-1

with a testbed weighing less than 2,000 pounds, new versions of the multiple scaling

method were specifically developed for the CEM3 testbed (Section 2.3). Using 1/10:1

multiple scaling, design parameters such as mass (M & I) and stiffness (El, G J, EA, &

GA) scale as 1/10 of full-scale, while geometry and frequency scale as unity. The

result is a scaled CEM3 testbed having the same overall size and structural

frequencies as predicted for the full-scale EOS AM-1 spacecraft, but at only 1/10 of the

weight.

The scaling of the SA and HGA appendages posed a difficult dilemma. Analyses

indicate that given the fixed bending rigidity (El) and short length of the existing 15-foot

CEM2 mast, it is impossible to satisfy both the Kb and frequency requirements using

the baseline multiple scaling method. Barring the construction of a proper 30-foot

array simulator (which is a possible option constrained by funding), it was decided to

use a variant of the 1/10:1 multiple scaling method which doubles the frequency of the

appendages relative to the full-scale EOS AM-1 spacecraft. Until a properly scaled,

30-foot solar array simulator can be developed, this approach serves as a useful

compromise, allowing the competing objectives of the CEM3 testbed to be met using

the existing CEM2 testbed hardware and suspension system. A summary of the key

scaled EOS AM-1 parameters for the CEM3 testbed design is provided in Section 2.4.

1.2 TESTBED DESIGN AND DEVELOPMENT

The CEM3 testbed consists of a spacecraft bus structure, two flexible appendages,

gimbaled instrument simulators, and dummy masses to simulate both science

instruments and spacecraft subsystems. The testbed is oriented so that the payloads

on the +Z side face the optical scoring systems on the laboratory floor (Figure 1-3).

Reconfiguration of the CEM2 testbed was accomplished using existing hardware, with

the exception of a new HGA simulator and some additional 14-inch diagonal bracing

struts. Existing CEM2 suspension devices are also used to suspend the spacecraft

from long cables to simulate the free-free on-orbit environment.

As discussed in Section 3.1.1, the key design drivers for the primary structure design

were (1) matching the spacecraft geometry, (2) matching the 23 Hz first bus system
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mode, and (3) supporting the attached payloads and equipment at the proper

center-of-gravity (c.g.) locations in order to match the overall spacecraft inertia

properties. The existing quantity of CEM2 struts also strongly influenced the

configuration design. In summary, the resulting CEM3 primary structure matches the

overall dimensions of the EOS AM-1 spacecraft (Figure 1-4).

Eighty-eight new "stock tube" diagonals were added to the CEM3 design in order to

increase the testbed torsional stiffness to meet the 23 Hz frequency requirement.

These diagonals are based on the existing CEM2 strut design, using a "stock" size for

the inner and outer diameter of the strut tube. The added diagonals are located in the

plane of the open bays of truss between the bulkheads (Figure 1-4). These new

diagonal struts were tested in tension and compression to characterize their stiffness,

as discussed in Section 3.1.2.

As discussed in Section 3.2, the EOS AM-1 "payloads" (science instruments and

subsystem equipment) are simulated on the CEM3 testbed using discrete rigid

masses. The rigid masses simulating the MISR, SWlR, and VNIR science instruments

are attached to the three CEM2 2-axis pointing gimbals. Because the CEM3 primary

structure and appendage designs are driven by other variables, the weight and

placement of the attached payloads served as the only unconstrained testbed

variables that could be adjusted to match the overall spacecraft inertias and c.g. Even

the payload weight variables are somewhat constrained because of the "out-of-scale"

90-pound weight of the 2-axis gimbals. Nonetheless, a spreadsheet and optimization

program were developed and used to provide a good match of the mass properties.

The design of the SA and HGA appendages was driven by the need to meet the

associated frequency and Kb requirements (Section 3.3). Though the existing CEM2

deployable mast is about half the desired length, the EOS AM-1 solar array was

simulated by attaching a 40-pound weight to the tip of the mast. This resulted in

matching the frequency and Kb goals for the first two bending modes. For the HGA, a

new design was developed to meet the scaled requirements for the geometry, weight,
frequencies, and Kb's. Modal tests of both the SA and HGA were conducted to

characterize their dynamics and update the Finite Element Method (FEM) models. The

results are discussed in Sections 3.3.2 and 3.3.4, respectively.

Five existing CEM2 suspension devices are used to support the CEM3 testbed and

simulate free-free on-orbit boundary conditions. The advanced suspension devices

provide vertical isolation, while long cables provide horizontal isolation. Four devices

are attached to the primary structure and one to the tip of the solar array
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simulator. Each device supports a load of less than 500 pounds. Analyses were

conducted to locate cable attachment points which provide both positive CEM3

structural load margins and rigid-body suspension modes below 0.2 Hz. In addition,

the stiffness gains of the suspension devices were tuned to minimize the suspension

interaction. Further information on the suspension system is provided in Section 3.4.

1.3 CEM3 and EOS AM-1 COMPARISON SUMMARY

The fidelity of the CEM3 testbed in terms of simulating the EOS AM-1 spacecraft was

evaluated by comparing the suspended CEM3 geometry, mass property, dynamics,

and appendage interaction FEM results with the corresponding scaled EOS AM-1

spacecraft FEM results (Tables 1-1 and 1-2). The most important parameters are

shaded in gray. The CEM3 FEM model used to generate these results reflects the

CEM3 configuration at the time of delivery to NASA/LaRC. It also includes updated

component FEM models incorporating the results of the stock tube diagonal, solar
array simulator and HGA simulator hardware characterization tests.

The results in Table 1-1 show good agreement for the overall geometry of the bus and

the high gain antenna. Because of the requirement to use the existing CEM2 mast, the

CEM3 solar array simulator is approximately half of the length desired for the testbed.

This difficulty was overcome by using a different scaling method for the appendage

design which preserved the important appendage dynamic interaction characteristics.

The total weight of the CEM3 testbed meets the requirement to be below 2,000

pounds, but exceeds the EOS AM-1 target value by 36%. This was a result of using

existing aluminum CEM2 struts to simulate the stiffness and frequency characteristics

of the graphite/epoxy composite EOS AM-1 primary structure. Fortunately, this has no

effect on the pointing performance of the testbed, which involves mainly the diagonal

inertias. The results for the center-of-gravity show good agreement for the Y and Z c.g.

locations. The X c.g. difference of 14 inches is acceptable, a result of the fact that the

aft end of the CEM3 structure was shortened due to the limited supply of CEM2 struts.

For the purposes of simulating the on-orbit dynamics of the EOS AM-1 spacecraft, the

most important mass properties are the diagonal inertias. Comparison of the diagonal

inertias indicates excellent agreement between the CEM3 testbed and the scaled EOS

AM-1 spacecraft values. In contrast, the cross products of inertia show poor

agreement, largely due to the use of the existing CEM2 2-axis gimbals. This is an

entirely acceptable compromise however, as in both the EOS AM-1 spacecraft and
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Table 1-1. CEM3 Comparison with EOS AM-1 Spacecraft

PROPERTY

BUS ililiiiiiiiiiiiiiii!ili!!iiiii!iiiii_iiiiiiiiiii!iiiiiiiiiiii!iiiiiiiii

GEOI_--IRY ii)iiiiiiiiiiiiiii!ii!iiiiiiiiiiii_iiii!i!i!iiii)iiiii)iii)i)iiiii)
,:.:,:.:.:,:.:+:.:,:+:.:.:.:.:.:.:.:+:.:.:.:,:+:,:+:.:.:.:.:+:.:
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(In ) .i.i.i.i)i.iii.i)!.)il)))))i)!)))i)H))))il))i)i)))i)i)))))i)))))i)))i

EOS AM-1 EOS AM-1

Full Scale Scaled - (A)

256 256

68 68

CEM3

220

60

78 78 80

APPENDAGE SA L 351 351 180

GEOMETRY (in) HGA L 100 100 100

MASS

PROPERTES

(Ibf, in,

Ibf-in^2)

1st System

Freq (Hz)

Total Weight
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

iiiiiiiiiiiiiii!ili!iiiii!i iiiiiiiiiiiiiiiiiiiii!il
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

iiiiiiiiiiiiii!iiiiiiiii!i!_!iiii!i!iiiiiiiiiiiiiiii

.............iiiiiiii
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

!iiiii!tii!i!iii!i!i!i)i!i!i!i!ili__)il)ii)ilil))ilili!ii)iiiiiiiiii
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

lyz
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

"_)i)i))ii)_)_)i)_)!)i)_)!)!)_iB_)))i))))i)))i)))))))))!)i)i!'

Payload

10,500

157.3

-3.1

-8.2

4.35E+07

6.73E+07

8.14E+07

-1.23E+06

1.63E+06

3.37E+06

23

35

1,050

157.3

-3.1

-8.2

4.35E+06

6.73E+06

8.14E+06

-1.23E+05

1.63E+05

3.37E+05

23

35

1,425

171.86

-6.37

-0.04

4.39E+06

6.84E+06

8.10E+06

-1.82E+04

4.18E+05

8.04E+04

24

22

Table 1-2. CEM3 Comparison with EOS AM-1 Appendage Dynamics

HGA Pitch

HGA Roll

Appendage Modes

SA Yaw ili_!!!_i_i!_!_ii_iiiiiiiii

iil ,i!iil ,iiiiiiiilililililiiiii  iiiiiiiiiiiiii!!!!i!!i!!!i!!il
SA Roll _i_ i_i

!i  !) iii iiiiiiiii ii iiiii iiii iii    i i iii!iiiiiiiiii i!i !iiiiiiiii!iiiiiiiii!ii!  
!!iiiiiiiii i  )iii  ii!i!iii!i!i
iiiiiiiiiiiiiii!i  )!ii!iiiiiiii!iiiiiiiii!iiiiii!iiiiiiiiiiii

i:):i:!:!:i:i:E:!:i:i:i:i:E:i:i:i:i:i:i:i:i:i:i:i:i:i:i:E:i:i:i:i:i:i:i:i:i:

EOS AM-1

Full Scale

EOS AM-1

Scaled - (C) CEM3

0.295 0.590 0.716

0.33 0.33 0.35

0.7600.380 0.815

0.61 0.61 0.81

0.501 1.002 1.258

0.07 0.07 0.07

0.660 1.320 1.517

0.61 0.61 0.73
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the CEM3 testbed the cross products of inertia are very small compared to the

diagonal inertias.

Table 1-1 also shows that the first system mode frequency of the bus is well-matched,

though the first payload mode is not. The latter is an artifact of the requirement to use

the existing CEM2 2-axis gimbal design.

Table 1-2 shows that the important overall character of the appendage dynamic

interaction (in terms of frequency spacing, coupling, and modal gain) has been

preserved, as further evidenced in the open-loop structural FRF's shown in Figures 1-5

through 1-7. A constant modal damping value of 0.5% was used for both the CEM3

and EOS AM-1 FRF's. In the region below 1 Hz, the CEM3 roll (Figure 1-5), pitch

(Figure 1-6), and yaw (Figure 1-7) FRF's display the same basic characteristics as the

scaled EOS AM-1 FRF's, with two exceptions. First, each CEM3 testbed FRF has a

peak associated with a low-frequency suspension mode, as predicted in Section 2.2.

Inspection of the CEM3 curves clearly shows that the suspension modes are

uncoupled from the appendage modes. Second, as was intended with the approach

described in Section 2.4 (using multiple scaling method C), there is approximately a

factor of two difference between the EOS and CEM3 appendage frequencies, while

the relative spacing and magnitude are preserved.

Overall, all of the parameters shaded in gray in Tables 1-1 and 1-2 show acceptable, if

not good agreement, reflecting a testbed with good fidelity in the important parameters

of interest. Considering the challenging constraints on the design effort, the dynamic

comparison of the open-loop FRF's and the appendage frequencies and Kb's is

surprisingly good. Further information on the testbed fidelity and associated analyses

is provided in Section 4.0.

In conclusion, the CEM2 model hardware has been successfully reconfigured to

provide a ground testbed representation of the low-frequency dynamic characteristics

of the EOS AM-1 spacecraft. The effort was accomplished within the five-month

schedule and at a very minimal cost in new hardware. The resulting CEM3 testbed is

now available for use in experiments to develop CSI technology for jitter isolation and

suppression and the enhancement of overall spacecraft pointing performance.
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2.0 BACKGROUND AND APPROACH

As a part of a program of ongoing research and technology development activities in

the CSI technology area, NASA/LaRC initiated the design and fabrication of the CSI

Evolutionary Model in 1990 to provide a testbed for the development, implementation,

and validation of CSI technology and associated hardware and software1,2, 3. Since

that time, the CEM has evolved from the Phase-0 through the Phase-1 and Phase-2

configurations (designated CEM1 and CEM2) in support of integrated CSI design,

pointing, jitter, disturbance rejection, isolation, and distributed control experiments 4.

The CEM has also been used in the development of associated ground test

techniques, including advanced zero-g suspension systems, actuators, sensors, and

precision pointing optical scoring systems 5.

This report describes the configuration and structural development effort for the

evolution of the CEM2 testbed into the CEM3 configuration. This evolutionary step

responds to the need to develop and test CSI technologies associated with typical

planned earth science and remote sensing platforms, such as the eight-satellite E©S

system, DMSP/NOAA weather satellites, LandSat, and others. The EOS spacecraft

series is of particular interest in that the CEM3 testbed will be used to support system

identification and CSI technology development experiments that may fly on the EOS

AM-1 spacecraft, as part of the Jitter Attenuation and Dynamics Experiment 6.

The primary objective of the CEM3 testbed development is to reconfigure the

components of the existing CEM2 testbed (Figure 1-1) in order to simulate the overall

dynamic behavior of a typical earth science and remote sensing platform, namely the

EOS AM-1 spacecraft (Figures 2-1a and 2-1b). In addition to this overall objective,

several specific objectives for the CEM3 were outlined by NASA/LaRC:

(1) Approximate the overall size and shape of the EOS AM-1 spacecraft.

(2) Approximate the solar array and HGA flexible appendage dynamic

interaction on the EOS AM-1 spacecraft.

(3) Simulate free-free on-orbit boundary conditions during CSI testing by

suspending the testbed in the Building 1293A test facility.

(4) Allow for convenient removal and replacement of testbed components in

in order to accommodate different passive and/or active structural members,

GN&C equipment, and kinematic mounts.
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Figure 2-1 a. EOS AM-1 On-Orbit Configuration (isometric and Side Views)
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Figure 2-1b. EOS AM-1 On-Orbit Configuration (Front and Top Views)
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The following guidelines were also provided for the accomplishment of the CEM3
objectives:

(a) Use the existing CEM2 hardware - develop a minimum of new hardware
at minimal cost.

(b) Use existing suspension system hardware which is capable of supporting
up to 2,000 pounds in the Building 1293A test facility.

(c) Approximate the overall size, shape, and dynamics of the EOS AM-1
spacecraft to as near full-scale as practicable.

(d) Use existing finite element models and EOS AM-1 data provided by NASA.
(e) Assemble the testbed for suspension in Building 1293A within five months.

Objective (4) is easily achieved in that the existing CEM2 testbed is composed of
erectable struts and attached components using quick-connect joints. However, the
remaining objectives and guidelines pose a difficult design challenge. In particular,
objective (1) is challenging due to the constraint of using existing hardware imposed
by guideline (a). The existing CEM2 components include approximately 1,900
aluminum truss struts assembled in 10-inch bays, a 15-foot deployable solar array
mast and tip weight, three 2-axis gimbaled science instrument simulators, and
associated control sensors (inertial reference units) and actuators (gas-jet thrusters).
Objective (2) is challenging in terms of using the existing 15-foot deployable mast to
simulate the dynamic interaction of the 30-foot EOS AM-1 array. A new simulator
would have to be developed for the HGA, as no corresponding hardware exists. The
approach to meeting objective (2) is further complicated by the need to simulate the
free-free low-frequency appendage dynamics in l-g, requiring adequate frequency
separation between the suspension system and appendage modes. Finally, satisfying
objective (3) and guideline (b) mandates that some sort of scaling method be used in
the testbed design, as a full-scale EOS AM-1 spacecraft would weigh in excess of
10,000 Ibs - five times the capability of the existing suspension system. Nonetheless,
in order to provide the most realistic CSI simulations, it is desirable for the CEM3
testbed to be as near a full-scale model of the EOS AM-1 spacecraft as practicable.

The approach to meeting these challenging objectives required a highly iterative
analysis, design, and development process. The following sections describe some of
the fundamental analysis results which form the basis for the CEM3 development
approach. Section 2.1 describes the physical and dynamic characteristics of the EOS
AM-1 spacecraft. In Section 2.2, two-body models are used to develop a basic
understanding of the flexible appendage dynamic interaction problem. The results of
this analysis provide insight into the key parameters which must be simulated in the
CEM3 testbed. These results are then generalized for the three-dimensional,
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multiple-appendage case. The challenge of simulating the free-free dynamics of the
EOS AM-1 spacecraft in the 1-g laboratory environment is also addressed. Section
2.3 describes the scale factor trades and a new variant of the multiple scaling method.
This method permits simulation of full-scale dynamic behavior using a model with
full-scale geometry, but only one-tenth the weight. Finally, Section 2.4 summarizes the
CEM3 conceptual design approach based on the derived testbed requirements and
the results of the analyses in Sections 2.2 and 2.3.

2.1 EOS AM-1 CONFIGURATION

The baseline EOS AM-1 spacecraft in its deployed configuration is shown in Figures

2-1a and 2-1b. The spacecraft is comprised of a rectangular main spacecraft body

and two deployable flexible appendages - the solar array and high gain antenna. The

main spacecraft body is comprised of truss primary structure, secondary structure,

subsystem equipment boxes, and attached science instrument payloads. The truss

primary structure when combined with kinematic payload mounts provides a

dimensionally stable platform which minimizes the effects of thermal distortion and

satisfies instrument alignment requirements.

The overall dimensions of the truss primary structure (without the payloads or

appendages) are approximately 232 inches in length, 68 inches in width, and 78

inches in height (Figure 2-2). The addition of the MODIS payload to the front end of

the spacecraft increases the overall length to approximately 256 inches. The

deployed solar array is 351 inches in !eng,'h with a blanket width of 196 inches, while

the HGA is a slender boom with a cantilevered length of 100 inches. The truss

structure, comprised of over 166 Iongerons, diagonals, and bulkheads, is constructed

using high modulus graphite/epoxy tubes bonded to titanium fittings. This provides

high stiffness and strength. The distances between bulkheads (bay lengths) are

chosen to accommodate attached components. The EOS truss structure comprises

39% of the total 10,494 pound spacecraft weight. Accordingly, the attached

components such as the appendages and science payloads account for the majority of

the weight and in turn dominate the spacecraft inertia properties.

Two analytical models were used to define the physical properties and dynamic

characteristics of the EOS AM-1 on-orbit configuration. Both models have a solar

array angle of zero degrees. The first model was the NASA/LaRC Reduced Order

Model (ROM) based on the Swales & Associates Version 3 EOS AM-1 On-Orbit Finite

Element Model, dated 13 April 1993. This model was primarily used to define the

physical properties of the spacecraft such as component weights and locations. In the
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ROM model, the instrument packages were reduced to equivalent lumped masses and

shell elements were replaced with equivalent beam elements. These changes were

necessary in order for NASA/LaRC to analyze the EOS spacecraft using their CSI

Design code 4. The ROM model was extremely useful in the CEM3 design effort since

the EOS instrument packages are also modeled as mass simulators on the testbed.

The second model used was the EOS AM-1 On-Orbit Modal Model, Version 3b (dated

22 July 1993) 7, which contains spacecraft mass property, frequency, and mode shape

data up to 200 Hz. The dynamic characteristics of the spacecraft, including frequency

response functions and bending mode gains, were computed using the information

contained in the modal model.

FRF's calculated using the on-orbit modal model indicate the important modes which

characterize the appendage dynamic interaction with the spacecraft bus (Figures 2-3,

2-4, and 2-5). The FRF's were developed assuming that torques were generated at

the location of the reaction wheels and responses were calculated at the location of

the GN&C sensors. A critical damping ratio of 0.5% was used in the analysis.

Altogether, there are four modes which characterize the open-loop dynamics below 1

Hz. These correspond to the first bending modes of the solar array and HGA in both

the in-plane and out-of-plane directions. About the roll axis, there are solar array and

HGA bending modes at 0.38 and 0.66 Hz, respectively. A third roll mode at 1.8 Hz has

an order of magnitude lower response. About the pitch axis, the response is

dominated by a HGA bending mode at 0.50 Hz. Similarly, about the yaw axis, the

response is dominated by a solar array bending mode at 0.30 Hz. The first bus

primary structural mode is a torsion mode about the roll axis, located at 23 Hz (Figure

2-3).

A summary of the EOS AM-1 geometry, mass property, and frequency characteristics

is provided in Table 2-1.

2.2 SIMULATION OF FLEXIBLE APPENDAGE DYNAMIC
INTERACTION

Intuitively, the approach to simulating the overall flexible appendage dynamic

interaction is to design the CEM3 testbed to match the open-loop structural frequency

response functions of the EOS AM-1 spacecraft. In this section, analyses are

conducted to develop a basic understanding of flexible appendage dynamic

interaction. Section 2.2.1 begins with a review of the flexible appendage interaction

problem, using simple two-body models to illustrate the fundamental parameters
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Table 2-1. Summary of EOS AM-1 On-Orbit Properties

PROPERTY

BUS

GEOMETRY

(in)

APPENDAGE

GEOMETRY (in)

MASS

PROPERTIES

(Ibf, In,

Ibf-in^2)

Key Modes

SA Yaw

SA Roll

HGA Pitch

HGA Roll

W

H

SA L

HGA L

Total Weight

Structure Wt.

Payload Wt.

X-CG

Y-CG

Z-CG

Ix)(

__ lyy

Izz

Ixz

lyz

Parameter

Freq_z)_

Kb

Fre_

Kb

Freq (Hz)

Kb

Freq (Hz)

Freq/Hz)

Bus System

Payload

EOS AM-1

Full Scale

256

68

78

351

100

10,494

4,094

6,400

157.30

-3.10

-8.20

4.35E+07

6.73E+07

8.14E+07

-1.23E+06

1.63E+06

3.37E+06

Value

0.295

0.33

0.38

0.61

0.501

0.07

0.66

0.61

23

35
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which characterize the open-loop structural frequency response. In Section 2.2.2,

these results are generalized for the three-dimensional, multiple-appendage case.

Finally, the effects of an added suspension system on the flexible appendage

simulation are addressed in Section 2.2.3.

2.2.1 Dynamics of Appendage Interaction

A simple two-body model and control block diagram illustrating the fundamental

free-free dynamics of a spacecraft and a flexible appendage is described in Figure

2-6. For the sake of discussion, the flexible appendage is assumed to be a solar array.

Actuators apply torques (T1) to the rigid spacecraft bus (11) to change the spacecraft

attitude (el). The flexible solar array is represented by the spring-mass system with

stiffness (K), damping (C), inertia (12), and attitude (e2). For this system, the modal

frequency (COb), and modal damping (_b) are defined by the equations shown in the

figure. In addition, a parameter called the bending mode gain (Kb) is described.

The bending mode gain (Kb) is a measure of the severity of the flexible appendage

interaction. For a torque input at resonance, it relates the amount of control actuator

excitation energy that is expended in the flexible dynamics of the solar array relative to

the amount expended in rigid-body pointing. For this simple two-body system with

actuator and sensors collocated on the bus, the modal gain is simply a scalar

reflecting the ratio of the flexible inertia to the controlled rigid-body inertia:

12
Kb=-- (2-1)

I1

Examination of the open-loop structural frequency response transfer function provides

further insight into the nature of the bending mode gain. For this system, the transfer

functions for the bus and solar array attitude response are:

Kb

el(s) _ 1 { (11+12) (2-2)
TI(S) (h+12)s 2 s 2 +2£,bO)bS+O)b 2

02(S) _ 1 (11+12)

TI(S) (11+ 12)S2 S2 + 2_bO)bS + (0b2
(2-3)
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S/C Bus Array

11+12
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11°12 2(_b[.Ob2 = I W+ 12. C Kb = 12 -
11°12 I1

RIGID BODY PLUS BENDING DYNAMICS

f

CONTROLF------- 1

TORQUE, T_+ I

_ ATTITUDE

Figure 2-6. Two-Body Model and Block Diagram
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The magnitudes of the corresponding open-loop structural frequency responses are

plotted in Fig 2-7. At resonance, the transfer function becomes:

Io,,s,i;I 1 EKbll ,2,,m'(s)l l+J_-_

(2-5)

For lightly-damped modes (small 4), the complex frequency term is much larger than

unity, and the resonant responses can be approximated by

8_(s)l Kb

_'_1 = 2(11+ 12)_b(_b2
(2-6)

e2(S)I 1 (2-7)
-= 2(h+12)_ b(°b2

The responses shown in Figure 2-7 and the equations above reveal several

characteristics of the system. First, for a free-free system with sensors and actuators

collocated on the bus, the resonance in the el/T1 response is always preceded by a

zero, corresponding to the frequency at which the reaction torque due to the flexibility

of the array matches the applied torque of the actuator. Second, the gain above the

rigid-body line due to the presence of the bending mode is 201og(Kb/2_) dB. Third, the

dotted/dashed line in the figure shows how the rigid-body line would continue if the Kb

were equal to zero (no appendage). Fourth, at frequencies well after the resonance,

the rigid-body line is shifted up by a gain of 20 log(1 + Kb) dB. Finally, it should be

noted the response of the array (e2/T1) does not depend on the value of Kb, it

effectively has a Kb of -1.

The effects of larger and smaller Kb values on the bus open-loop transfer function are

shown in Figure 2-8. The heavy dashed line corresponds to a Kb of zero. As can be

seen in the figure, larger Kb's correspond to:

(1) Increased magnitude of the flexible-body response.

(2) Increased spacing in frequency between the pole and zero.

(3) Increased upward shift in the rigid-body line after resonance.
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Note that for a Kb of 1, the steady-state response at resonance for the solar array and
the bus have the same magnitude (as is evident in Figure 2-7 if Kb = 1). For values of
Kb less than 1, the "rigid-body" response of the bus is greater than that of the array.
For Kb values greater than 1, the response of the array is larger than the bus.

A translational analog for the spacecraft pointing Kb problem is provided in Figure 2-9,
where M1 is the mass whose position we are attempting to control. It is clear in both of
these examples that large Kb's correspond to a potentially difficult control situation
where the "tail is wagging the dog".

The values of the terms Kb and (Kb/2() are closely linked to the stability of the
closed-loop system (Figure 2-10). The gain margin of a rigid-body system without a
flexible appendage is related to the value of the open-loop magnitude response of the
control system at the phase crossover frequency. The amount of gain margin lost due
to the addition of an appendage with a frequency COblocated near the phase crossover

frequency of the rigid-body control system is approximately 201og(Kb/2_) riB. As

shown in Figure 2-10, the addition of the bending mode has the effect of adding a loop

to the gain-phase stability plot, creating an unstable system in this example. Similarly,

the much smaller amount of gain margin lost due to an added appendage with its

frequency located well below the phase crossover frequency of the rigid-body control

system is 201og(1 +Kb) dB.

Given the parameters of the rigid-body control design without appendage flexibility,

the stability of a spacecraft control system can be evaluated with various attached

appendages in terms of the allowable Kb, damping, and frequency for each

appendage. Bending mode stability maps can be generated by calculating the value

of Kb which causes instability at a particular appendage frequency.

An example for a typical spacecraft is provided in Figure 2-11, using an assumed

damping of £, = 0.5% for the appendage modes. Three sets of data are plotted for

different solar array gimbal angles. The solid line on the plot (reflecting zero gain or

phase margin) has three regions. The region of constant Kb corresponds to the

frequencies below the rigid-body crossover frequency. This region is a function of

rigid-body gain margin and is virtually unaffected by appendage damping for positive

Kb - the limit is when the gain margin of the rigid-body system without flexibility effects

is equal to 201og(l+Kb) dB. The second region is the notch in allowable Kb where the

appendage resonance adds phase lead and amplification. This region is very

sensitive to the modal damping - lighter damping results in a deeper notch with a

reduced Kb limit. The third region reflects increasingly allowable Kb where the
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frequency of the appendage mode is increasingly well-separated from the 0.01 Hz
bandwidth of the example control system.

An example of the effect of increasing the control system bandwidth on the stability plot
is shown in Figure 2-12. The assumptions used in the analysis are contained in
Figure 2-13.

In summary, Equations (2-6) and (2-7), and the annotations in Figure 2-7 indicate that
the first order fundamental parameters which describe the structural open-loop
frequency response are the bending mode gain (Kb), modal frequency (COb),inertia (I),
and modal damping (4). Given the proposed bandwidth and control system design,
these fundamental parameters also provide information about the gain margin and
stability of the closed-loop control system.

2.2.2 Generalized Three-Dimensional Modal Gain Matrix

In general, for each flexible mode, the modal gain is a matrix quantity, relating the

sensitivities of responses about all three axes due to control inputs about all three
axes:

_)T__I

Kb - _)TM---_ (2-8)

If the mode shapes are mass normalized, the denominator of Eq. (2-8) becomes unity,

and the Kb matrix for a particular mode can be expressed in terms of the spacecraft

inertia matrix and the slopes (angular deflections) at the sensor and actuator locations:

Kb =
Ixx_)x2 ÷ Ixy_x_y ÷ Ixz(_x_z

Ilxy_x2 + lyy_xd_y+ lyz_xd_z

Ilxz_x 2 + lyz_x(_y + Izz_x_z

Ixx_)x_y+ Ixy_)y2 + Ixz_)y_)z

Ixy_x_y + lyy_)y2 + lyz_y_)z

Ixz_x_y + lyz_y2 + Izz_y_z

Ixx_x(_z + Ixy_)y(_z+ Ixz_z 2

Ixy_x(_z + lyy(_yd_z+ lyz_z _'

Ixz_)x_z + lyz(_y(_z+ Izz_z 2

(2-9)

For systems with multiple modes, the modal gains for each mode can be described as

a matrix using the formulas in Equation 2-9. For the EOS AM-1 spacecraft, the most

important Kb's are the diagonal terms associated with the axes of excitation (e.g. roll

response at the location of the GN&C sensors due to excitation about roll axis at the

location of the reaction wheels). These are indicated on the FRF's in Figures 2-3, 2-4,

and 2-5. Examination of the FRF's suggests that the interaction of the four important

appendage modes below 1 Hz with the "rigid-body" motion of the spacecraft bus can

be characterized as a single 3-body (bus, solar array, and HGA) problem about the roll
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axis, and two 2-body problems (bus and solar array or HGA) about the pitch and yaw
axes, respectively.

2.2.3 Suspension System Effects

To simulate free-free boundary conditions, the CEM3 testbed will be suspended using

long cables (for horizontal isolation) attached to advanced zero-g suspension devices

(for vertical isolation). This section investigates the effect of the suspension modes on

the simulation of the free-free spacecraft dynamics by comparing the free-free open-

loop structural transfer function with the corresponding suspended transfer function.

Further detail on suspension system design and potential interactions is provided in

References 5, 8, and 9.

The two-body model discussed in Section 2.2.1 can be modified to reflect a

suspended test article, as shown Jn Figure 2-14. The added stiffness and damping of

the suspension system are included by attaching a spring (K1) and a damper (C1)

from the bus to ground. The associated block diagram reflects the fact that there are

now two modes, which are assumed not to be closely-spaced, reflecting a good

suspension system design. The lower frequency mode is the suspension mode (by

design), where the rotations of the bus and array are in phase. The upper frequency

mode is the array mode, where the rotations of the bus (el) and the array (e2) have

opposite sign. The Kb vaJues for these two modes are designated Kbl and Kb2,

respectively, where the values are calculated using equation (2-8) for each mode.

For this system, the open-loop structural frequency response transfer function (01/T1)

is:

Kbl Kb2

el(S) _ (11+12) _ (11+12) (2-10)
TI(S) s 2 + 2_blO)blS + O)bl 2 S2 + 2_b2O)b2S + (_b22

Evaluating the transfer function at the array mode frequency eb2 yields:

=11 I K 21,I '<s l<,1+I_-_1 '2)C0b2' J2----_ I (2-11)
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K1 = Suspension Stiffness
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Figure 2-14. Suspended Two-Body Model and Block Diagram
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For light damping, the peak resonant response can be approximated by:

el(s)l Kb2
-_---_1---2(h+12)_b2e_22

(2-12)

Comparing Equations 2-12 and 2-6, it is interesting to note that the peak resonant
response of the array mode is dependent only on the Kb and modal parameters of the
array mode, and is essentially independent of whether or not the system is free-free or
suspended.

Two transfer functions are plotted as dashed lines in Figure 2-15. In both cases the

array mode frequency is 1 Hz, while the Kb of both the suspension and array modes is

unity. The sole difference between the two dashed-line responses is the suspension

frequency, which is 0.10 Hz for the first case and 0.25 Hz for the second case. The

corresponding free-free transfer function (Eq. 2-2) for the same Kb2 and O0b2 is plotted

as a solid line for reference.

Comparison of the dashed and solid response in Figure 2-15 yields the following

observations for suspended as well as multi-mode systems:

(1) For both the free-free and suspended cases, the response of the array

mode is identical in the vicinity of the array resonant frequency and at

higher frequencies. This is true regardless of the value of Kbl.

(2) The difference between the rigid-body line of the free-free system and

the mass line of the suspended after the suspension resonance is a

gain loss of 20 log(1 - Kb) dB.

(3) A perfect suspension system has a suspension mode with a Kb of unity

about the principal axes of inertia, so that 201og(1 - Kb)= 0 dB. This is true

for the case plotted in the figure, which is why the mass lines after the array

resonance are coincident.

(4) For a suspended system with many modes, the mass line is shifted up or

down after the nth mode by the factor (£Kbi)/( T-,Kbi-1 ) for i = 1,2,3 ... n.

(5) The slight shift in the zero location of the array mode for the 0.25 Hz

suspension case suggests that this frequency is near the limit of the

suspension system interaction. Thus, separation of the suspension modes

and the testbed modes by at least a factor of four is desirable.
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Note that observation (3) is another way of stating that the perfect suspension system

would contain all the elastic energy of the suspension mode within the suspension

devices, essentially treating the suspended test article as a rigid body. A Kb of unity

for the suspension mode therefore corresponds to making the elastic energy within the

suspension devices equal to the kinetic energy of a corresponding free-free rigid-body

system. It is also interesting to note that if the suspension and array modes are

well-separated, the damping of the suspension system mode has no effect on the

quality of the free-free simulation for the array mode.

In summary, a suspended test article can provide an excellent representation of the

free-free dynamic interaction of the bus and solar array in the frequency range above

the suspension mode, as long as the suspension and array modes are well separated.

2.3 SCALING LAW DEVELOPMENT

The motivation for considering scaling the CEM3 testbed is based on the fact that the

weight of the EOS AM-1 spacecraft exceeds the suspension capability of the test

facility by a factor of five. A feasibility study was conducted to determine if a scaling

method could be implemented to develop a lighter CEM3 testbed with overall dynamic

characteristics which are scaled in relation to the EOS AM-1 spacecraft. Recognizing

the desire for the CEM3 to be as near full-scale as possible, the goals of the scaling

exercise were to develop a scaled design with one-tenth the weight of the EOS AM-1

spacecraft but with full-scale geometry and full-scale dynamics.

In the past, NASA/LaRC has used several structural dynamic scale models and has

also participated in the development of new scaling methods10,11,12. Reference 13 is

an excellent text on the subject. For brevity, the scaling approach is summarized here.

In general, scaling methods can be developed by requiring a simple scalar

relationship between the matrix equations governing the dynamic behavior of the

CEM3 scale model testbed and the EOS AM-1 spacecraft. Similarity laws are derived

by noting that to satisfy this condition, each row and each term in the matrix equations

of motion must be multiplied by the same scalar coefficient. Equating the scale factors

which make up the coefficient for each term in the equations of motion yields the

relevant similarity laws, many of which have an intuitive, physical interpretation (Figure

2-16).
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Several types of scaling methods can be used which satisfy the similarity laws. These

scaling methods involve up to four scale factors which can be independently selected

and still satisfy the similarity laws. For this study, two scaling methods were

considered. The first is replica scaling, wherein the same materials are used as in the

full-scale original and the dimensions on the design drawings are geometrically

scaled. A 1/2-scale replica model of the EOS AM-1 spacecraft would weigh less than

2,000 pounds. A scale factor of 1/2 may also be attractive because the existing CEM2

mast is about half the length of the EOS AM-1 solar array. Replica scaling is both the

most accurate and costly scaling method, though different levels of fidelity for replica

scaling can be used, depending on how much design detail is replicated.

The second method addressed is multiple scaling, where four scale factors are

selected. Figure 2-17 summarizes the derivation of a new multiple scaling method

specifically developed to meet the objectives of the CEM3 testbed. The method is

called 1/10:1 multiple scaling because the mass scale factor (_-M) is 1/10, while the

dimensional (_.L) scale factor is unity. In this example, the time (_.t), and deflection

response (_.x) scale factors are also chosen to be unity. This scaling approach is

interesting in that setting both Xt and _.L to unity creates a situation where the scale

factors for all the spatial and temporal derivatives are also equal to unity. Also, since

XL = 1, all the powers of XL in the stiffness terms are unity, constraining the scale

factors for the cross-sectional rigidity properties (_.EA, _.EI, XGA, _.GJ) to be equal, even

though these properties have different units. In a detailed model, this would be

accomplished through distortion of the design of the cross-sectional properties,

compromising some of the model fidelity (replica scaling involves no such

compromises) 10. However, since the CEM3 testbed is intended to match only the

overall characteristics of the EOS AM-1 spacecraft using existing CEM2 hardware, this

is a secondary issue.

Three additional variations of the 1/10:1 multiple scaling method were investigated.

Scale factors for the four multiple scaling methods and the replica scaling method are

compared in Table 2-2.

Multiple scaling method (A) meets the goals of a full-size scale model with full-scale

(_.=1) response characteristics (_,'_x,x,'___,_,_e,_,_) and 1/10 the mass. This is

accomplished by scaling the property characteristics (mass, stiffness, and damping)

and the applied forces by 1/10. This is evident in the comparison of the equations of

motion for the full-scale system:

M_+Ck+Kx=F (2-13)
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Table 2-2. Comparison of Scaling Options

Parameter

Selected Factors

Mass (Weight), _M

Length, ,_ L

Time (1/freq), _, t

Deflection, _x

Derived Factors

Moment Of Inertia

Static Imbalance

Angular Rotation

Velocity

Angular Velocity

Acceleration

!Angular Accel

Disturbance Force

Disturbance Torque

Bending Rigidity, El

Torsion Rigidity, GJ

Axial Rigidity, EA

Shear Rigidity, GA

Damping Coeff, C

Strain

% Crit Damping
K.E. & S.E.

Power

IBW, Sampling Rate

Effective Density

Typical

Full-Scale

Value(s)

10,545 Ibs

20, 6 ft

2.5 sec, .4 Hz

6.6E7 Ib-in^2

2.0, 3.5 asec

0.33, O.09 Ib

195, 5 in-lbs

1.16E+08

2.06E+07

9.43E+07

8.43E+06

0.15, 0.5

0.15, 2 Hz

Mult.

(A)

0.1

1

1

1

0.1

0.1

0.1

0.1

0.1

1

1

0.1

0.1

1

0.1

Mult.

(B)

0.1

1

1

2

2

2

2

2

2

0.1

0.1

0.1

0.1

0.1

2

1

0.4

0.4

1

0.1

Mult.

(c)

0.1

1

0.5

1

1

2

2

4

4

0.4

0.4_

0.4

0.4

o.4!
0.4

0.2_

1

1

0.4

0.8

2

0.1

Mult.

(D)

0.1

1

0.5

0.5

0.5

1

1

2

2

0.4

0.4

0.4

0.4

0.2

0.5

1

0.1

0.2

2

0.1

Replica

1/2 Scale

O. 125

0.5

0.5

0.5

3.13E-03

6.25E-03

1

1

2

2

4

0.25

0.125

6.25E-03

6.25E-03

0.25

0.25

0.25

1

1

0.125

0.25

2
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with the sub-scale system:

(2-14)

Multiple scaling method (B) corresponds to the same physical design as (A), except

that the applied forces and corresponding responses are scaled by 2 instead of unity:

(2-15)

This has the effect of doubling the strain and quadrupling the power compared to the

full-scale spacecraft, but would provide a better signal-to-noise ratio for testing.

Multiple scaling method (C) is the same as (A) with the exception that the frequency

has been doubled. The temporal derivatives are no longer unity. Compared to

method (A) the bandwidth is doubled, the applied forces are quadrupled, and the

power is increased eight-fold. The corresponding equation is:

(2-16)

Finally, scaling method (D) is a combined variation of (B) and (C) with reduced power

and response:

(2-17)

For comparison, the corresponding replica scale factors for a 1/2-scale model are also

provided in the last column of Table 2-2. While many of the multiple scaling factors are

the same across Table 2-2 for methods (A) through (D), the replica scale factors are

nearly all different. Compared to multiple scaling method (A), a replica 1/2-scale

model would have half the overall dimensions and deflections, and twice the modal

frequencies.

In summary, five scaling approaches have been investigated which may be used in

developing the CEM3 testbed. The selection of the most appropriate scaling method

to use depends on the particular type of CSI experiment being conducted and the

associated key parameters, e.g., strain for a passive damping experiment or
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bandwidth for an active control experiment. For multiple scaling methods (A) and (B),
the physical testbed structural design is the same, and only the magnitude of the
applied forces and responses are changed. In contrast, multiple scaling methods (C)
and (D) involve many of the same scale factors, but the testbed structural design
(stiffness) is increased to have twice the modal frequencies as EOS AM-I. Finally, a
1/2-scale replica model would also have twice the modal frequencies, but would
involve many different scale factors for the other parameters, including the overall size.
The final selection of the scaling method is addressed in the next section.

2.4 CONCEPTUAL DESIGN APPROACH

The overall CEM3 testbed conceptual design approach is based on the findings in the

previous sections with emphasis placed on the objectives provided by NASA/LaRC.

Key drivers which influenced the approach are:

(1) Simulating the overall solar array and HGA flexible appendage dynamic

interaction of the EOS AM-1 spacecraft requires the proper scaling of

the fundamental parameters which characterize the open-loop structural

frequency response.

(2) The weight capability of the existing CEM2 suspension system requires that

scaling be used for the CEM3 testbed.

(3) To achieve realistic CSI simulations, the overall size, shape, and dynamics

of the CEM3 testbed should be as close to those of the full-scale EOS AM-1

spacecraft as practicable.

(4) Existing CEM2 components should be used to the extent practicable.

(5) To achieve a good simulation of the free-free on-orbit boundary conditions,

adequate separation should be provided between the suspension and CEM3

testbed flexible modes.

The fundamental parameters which describe the open-loop frequency response are

the bending mode gains, appendage modal frequencies, inertia matrix, modal

damping values, and the frequency separation of the low-frequency appendage

modes with respect to the spacecraft bus first primary structural mode. In addition,

matching the center-of-gravity is a derived requirement to achieve the proper inertias

and Kb values for appendage interaction. Note that since the spacecraft is being used
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in CSl pointing experiments, the correct scaling of the three diagonal spacecraft
rotational inertias is much more important than scaling the mass or the cross products
of inertia. The scaling of the actual testbed mass is immaterial and the cross products
of inertia need only be very small compared to the diagonal inertias.

The 1/2-scale replica option was eliminated early on in the trade study to select the
appropriate scaling method for the CEM3 testbed. The multiple scaling method was
selected over the replica scaling method primarily because of the desire to have
full-scale size and responses. Also, though the existing CEM2 mast would have the
correct length to simulate a 1/2-scale solar array, the testbed primary structure would
be only 10 feet long, crowding the attached payloads and equipment.

For the CEM3 testbed, 1/10:1 multiple scaling method (A) was selected as the
baseline for the CEM3 testbed primary structure, resulting in the CEM3 testbed having
the same overall physical dimensions as the EOS AM-1 spacecraft. The basic
approach is to reconfigure the CEM2 testbed truss to the same overall geometry as the
EOS AM-1 spacecraft structure. By locating 1/10-scale weights at the appropriate
locations to simulate the payloads and attached equipment, the inertias and
center-of-gravity can also be matched. This same testbed physical structural design
could also be used in different experiments employing 1/10:1 multiple scaling method
(B) by simply increasing the magnitude of the applied forces.

The scaling of the solar array and HGA presents a difficult dilemma. Analyses indicate
that given that the existing 15-foot CEM2 mast is half the length of the EOS AM-1 array
and has a fixed bending rigidity (El), it is impossible to satisfy both the Kb and
frequency requirements associated with scaling method (A). Barring the construction
of another 30-foot array simulator (which is a possible option constrained by funding),
it was decided to use 1/10:1 multiple scaling method (C) for the low-frequency flexible
appendage design. Though scaling method (C) calls for a full 30-foot array length with
twice the frequency, design studies indicated that (quite by chance) it is possible to
attach a lumped weight to the tip of the CEM2 mast which results in approximately the
correct Kb, frequencies, inertias, and center-of-gravity for overall simulation of the
appendage interaction. Since the frequency is doubled, this choice also reduces the
potential for interaction between the low-frequency CEM3 appendage modes and the
suspension system.

In designing the HGA simulator, proper simulation of the flexible 3-body dynamic
interaction between the solar array, high gain antenna, and spacecraft bus requires
that the HGA frequency also be doubled according to scaling method (C). The result is
an open-loop transfer function where the frequencies of the appendages are shifted
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up by a factor of two, but with the Kb's, frequency spacing, and full character of the
transfer function preserved. Fortunately, the first-order appendage modes are
separated from the bus global system modes by nearly two orders of magnitude, so
that the bus structure need not be stiffened to increase its frequency correspondingly.

Finally, the approach to simulating the free-free boundary conditions of the on-orbit
EOS AM-1 spacecraft is based on suspending the CEM3 testbed in such a way that
the suspension modes have a factor of four separation from the relevant testbed
flexible modes. Suspension cable attachment points and suspension device stiffness
gains are carefully selected to achieve positive structural strength margins and
suspension frequencies below 0.2 Hz.

In summary, the approach for reconfiguring the CEM2 testbed is based on designing

the suspended CEM3 testbed to match the relevant parameters scaled from the EOS

AM-1 spacecraft design shown in Tables 2-3 and 2-4. The most important parameters

are shaded in gray. The appendage modal damping is an important parameter that

was not included in the tables because it is unknown at this time. A critical damping

ratio of 0.5% was assumed. In the conduct of CSI experiments addressing the

low-frequency appendage interaction (i.e., below 10 Hz where the bus acts as a rigid

body), scaling method (C) should be used in the experiment design (e.g., to calculate

the magnitude of the applied forces and the bandwidth of the controller). Scaling

method (A) should be used in designing higher-frequency experiments where the

flexibility of the bus is important. Until a properly-scaled, 30-foot solar array simulator

can be developed, this approach serves as a compromise, allowing the competing

objectives of the CEM3 testbed to be met using the existing CEM2 testbed hardware

and suspension system.
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Table 2-3. Scaled EOS AM-1 Properties - Method A

PROPERTY

BUS

GEOMETRY

(in)

APPENDAGE

GEOMETRY (in)

MASS

PROPERTIES

(Ibf, In,

Ibf-ln^2)

L

_W

H

SA L

HGA L

Total Weight

X-CG

Y-OG

EOS AM-1

Full Scale

256

68

78

351

100

10,500

157.3

-3.1

ZCG -8.2

Ixx 4.35E+07

lyy

Izz

I st System

Frec I IHzl

_ Ixy

Ixz

lyz

Bus

Payload

6.73E+07

8.14E+07

-1.23E+06

1.63E+06

3.37E+06

23

35

EOS AM-1

Scaled - (A)

256

68

78

351

100

1,050

157.3

-3.1

-8.2

4.35E+06

6.73E+06

8.14E+06

-1.23E+05

1.63E+05

3.37E+05

23

35

Table 2-4. Scaled EOS AM-1 Properties - Method C

Appendage Modes

SA Yaw

SA Roll

HGA Pitch

:Freq (Rz):: "

Kb:

Freq (Hz),

Kb

HGA Roll

EOS AM-1

Full Scale

EOS AM-1

Scaled - (C)

0.295 0.590

0.33

0.380

0.61

0.501

0.07

0.660

0.61

0.33

0.760

0.61

1.002

0.07

1.320

0.61
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3.0 TESTBED DESIGN AND DEVELOPMENT

Development of the CEM Phase-3 testbed structural configuration was a highly

iterative, coupled problem with suspension, scaling, and existing hardware issues to

consider during the design process. The final CEM3 testbed design, comprised of

truss primary structure, flexible appendages, payload mass simulators, 2-axis pointing

gimbals, gas-jet thrusters, and associated electronic boxes is shown in finite element

model form in Figures 3-1 and 3-2. The testbed, shown in a free-free configuration,

has three 2-axis gimbals mounted on the underside of the structure which simulate the

VNIR, MISR, and SWlR science payloads located on the nadir (+Z axis) side of the

EOS AM-1 spacecraft. In this orientation, the gimbals are easier to access and have

unobstructed fields of view. Lasers mounted on the 2-axis gimbals in conjunction with

advanced optical scoring systems located on the lab floor are used to conduct

precision pointing experiments. All of the remaining science payloads are modeled as

mass simulators which are shown as shaded plates in Figure 3-1. Some of the mass

simulators are mounted on payload towers (one or two bays of truss) in order to more

accurately match the payload center-of-gravity locations contained in the NASA/LaRC
ROM model.

Two flexible appendages are attached to the CEM3 testbed. The deployable mast and

variable tip weight originally designed for the CEM Phase-2 testbed are used to

simulate the low-frequency dynamics of the single EOS AM-1 solar array. A new

CEM3 high gain antenna simulator was designed and fabricated to simulate the

low-frequency dynamics of the EOS AM-1 high gain antenna. The horizontal

orientation of the cantilevered CEM2 mast requires the use of a zero-g suspension

device to off-load its tip weight while the vertically mounted HGA is sufficiently robust

and requires no off-loading. Modal tests of both appendages were conducted to

characterize their dynamics and update the associated FEM models.

This section addresses the overall design and development testing of the CEM3

testbed components. An overall summary of the CEM Phase-3 testbed structural

configuration in terms of Primary Structure (3.1), Attached Payloads (3.2), Appendages

(3.3), and Suspension System (3.4) component hardware is provided in the following

four sections. Comparisons between the CEM3 and the scaled EOS AM-1 dimensions

are provided to demonstrate the geometric similarity between the two models. Test

results associated with newly designed CEM hardware components such as the "stock

tube" diagonal struts, deployable mast (solar array simulator), and high gain antenna

simulator are discussed in the appropriate sections.
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3.1 PRIMARY STRUCTURE

Several design iterations were required to arrive at the final CEM3 primary structure

configuration which best matches the overall scaled EOS AM-1 bus geometry and

stiffness using the existing 10-inch CEM2 truss hardware. The key design drivers for

the primary structure in accordance with Tables 2-3 and 2-4 were:

(1) Matching the spacecraft geometry.

(2) Matching the 23 Hz spacecraft first structural mode.

(3) Supporting attached payloads and equipment at the proper c.g. locations in

order to match the spacecraft inertia properties.

The design was also strongly influenced by the existing quantity of CEM2 struts.

3.1.1 Truss Design Configuration

The CSI Phase-3 testbed primary structure design shown in Figure 3-3 is based on

four truss system Iongerons (Figure 3-4), six truss bulkheads (Figure 3-5), system

diagonals struts, and payload towers. A comparison of the primary structure layouts

for the CEM3 and EOS models is shown in Figure 3-6. The length of the CEM3

primary structure is slightly shorter than the EOS AM-1 b_s structure (220" vs. 256")

while the width (60" vs. 68") and height (80" vs. 78") dimensions of the two structures

are fairly close. For a perfectly scaled model, the overall dimensions of both structures

should be identical since the length scale factor (;LL) for 1/10:1 multiple scaling is 1.0.

The difference in geometry is primarily attributed to the fact that there are a limited

number of CEM2 struts available to build the CEM3 testbed, and that they must be

assembled in 10-inch increments. Overall, the scaled geometry and bending stiffness

properties of the full-scale EOS AM-1 bus structure are closely approximated by the

CEM3 primary structure using the existing CEM2 strut hardware.

In order to achieve primary structure bending stiffness levels sufficient to meet the

structural mode frequency requirement, specific Iongeron types (-1L, -2L, -3L, & -4L)

having a range of axial stiffness properties were distributed throughout the structure in

a systematic manner. Strategic placement of the stiffer -1L Iongerons at the outer most

location on the system Iongerons was the key to achieving the desired primary

structure overall bending stiffness (Figure 3-4). Judicious placement of the Iongeron

strut types and diagonal struts also served to stiffen local component modes

throughout the testbed.
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In order to achieve the desired primary structure torsional stiffness required to place

the CEM3 first structural mode above 23 Hz, stiffer diagonal struts were needed.

Eighty-eight new struts were designed and fabricated with an axial stiffness four times

greater than the existing CEM2 diagonal struts. These are designated "stock tube"

struts because they are made from a stock tube size, whereas many of the tube

sections for the CEM2 struts were turned down on a lathe. Pairs of the stock tube

struts were used as system diagonals in the open truss faces between CEM3

bulkheads 1 & 2, 2 & 3, and 3 & 4 and as internal diagonals in bulkheads 2 and 3. The

new stock tube diagonal strut is simply a -1L Iongeron strut (which has a stock tube

diameter) whose tube length has been increased from 6.678 inches to 10.820 inches.

The design dimensions of the new diagonal strut (-7D) are shown in Figure 3-7. Static

tests were performed to quantify the axial stiffness properties of the new strut with the

results discussed below in Section 3.1.2. A summary of the effective area, axial

stiffness, density, and length properties of each strut type used in the CEM3 model is

shown in Table 3-1.

The total quantity of strut hardware required to assemble the CEM3 testbed is

summarized in Table 3-2 along with the quantity of strut hardware available at

NASA/LaRC. The CEM3 testbed structure was designed using 1915 struts with 94 to

spare. A special effort was made to reduce the number of batten frame diagonal struts

used in the CEM3 truss which resulted in a surplus of 63 diagonal struts. For the

added weight, these struts contribute very little to the stiffness of the testbed and are

more effectively used as spare parts.

3.1.2 Stock Tube Diagonal Strut Test

A series of static force-deflection tests was conducted on the stock tube diagonal struts

developed for the CEM3 primary truss structure. The objective of the tests was to

quantify the equivalent axial stiffness property of the struts for use in the CEM3 finite

element model. Five identically prepared stock tube strut assemblies were each

tested at least twice in both tension and compression in order to demonstrate

repeatability of test results and address experimenta! uncertainty. Shake-down tests

were always conducted prior to performing tests of record in order to remove any

preset or slop in the test setup.

Figure 3-8 shows the test setup used during the axial testing. The strut specimen is a

complete strut assembly comprised of a "stock tube" strut, two standoffs, two screws,

two nuts, and a node ball. The assembly is mounted to the test fixture using the

appropriate screws. The stock tube strut was mounted to a diagonal slot on the node

ball in order to test the actual node ball/strut orientation which will be used in the
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CEM3 testbed.

The basic setup and procedure used to test the stock tube strut assemblies is identical

to that previously used during the successful testing of the CSI Phase-1 strut

hardware3. The only exception is performance of a single continuous

tension/compression test rather than individual tests. The stock tube strut was first

loaded from 0 Ibs up to the maximum tensile load, then ramped back through 0 Ibs

down to the maximum compressive load, and then back again up to the 0 Ib starting

point. This resulted in a continuous single data record for both the tensile and

compressive tests which is extremely useful when evaluating linearity about the origin.

The maximum tensile and compressive load values used for all tests were +/- 500 Ibs.

Torque values of 240 in-lbs for the nuts and 210 in-lbs for the stand-off screws were

used to assemble each diagonal strut assembly consistent with the Phase-1 hardware.

Only the unique "stock tube" hardware was changed out between each strut test with

the node ball and joint components remaining the same for all tests.

The overall results of the 10 axial stiffness tests of record are shown in Table 3-3.

Equivalent axial stiffness values were computed for each strut test by performing linear

regression on the entire data record which included the combined tension and

compression measurements. In performing the linear regression, leading repeated

zeros, startup transients, and trailing repeated zeros were manually deleted from the

test data to avoid biasing the curve-fit. The average stiffness values computed for

each set of test data are extremely close in magnitude with the maximum stiffness

value being 246,730 Ib/in (XD101_R1) and the minimum stiffness value being 242,130

Ib/in (XD102_R1). The difference between the two extreme computed stiffness values

is only 1.9% which demonstrates the excellent stiffness repeatability observed during

the test series. The overall average strut axial stiffness based on all 10 tests is

244,252 Ib/in which is the value used in the CEM3 finite element model. Figure 3-9

shows the quality of the axial load versus displacement data measured during test

XD102_R2 which is representative of all the test data. The strut axial behavior is

highly linear in both tension and compression.

3.2 ATTACHED PAYLOADS AND EQUIPMENT

The "payloads" (science instruments and subsystem equipment) on the EOS AM-1

spacecraft were modeled on the CEM3 testbed using either a discrete rigid mass or a

2-axis gimbat with an attached mass. The rigid masses simulating the MISR, SWIFt,

and VNIR science instruments are attached to the three CEM2 2-axis pointing gimbals.

Because the primary structure and appendage designs are constrained by
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Table 3-3. Stock Tube Diagonal Strut Axial Stiffness Test Results

STRUT ID No.

XD101

XD101

XD102

XD102

XD103

XD103

XD104

XD104

XD105

XD105

TEST No.

R1

R2.

R1

R2_

R1

R2

R1

R2

R1

R2.

K (Ib/in)

246,730

245,280

242,130

242,505

245,875

245,901

243,840

243,606

243,118

243,537

IJ K (average)= 244,252 Ib/in I
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other variables, the weight and placement of the attached payloads served as the only

unconstrained variables that could be adjusted to match the overall spacecraft inertias

and c.g. Even the payload weight variables are somewhat constrained because of the

"out-of-scale" 90-pound weight of the 2-axis gimbals.

A total of 11 out of the 19 payloads simulated in the EOS AM-1 ROM model were

identified as important for the CEM3 model and therefore were included as part of the

testbed design. The other 8 payloads were "deleted" to eliminate excess inertia in

order to best match the overall EOS AM-1 spacecraft inertia and c.g. properties. Table

3-4 contains a list of the 11 payloads included in the CEM3 model while Table 3-5

shows the 8 deleted payloads. The weight of the deleted payloads is offset by the

corresponding weight increase resulting from using the 2-axis gimbals which are

significantly heavier than the EOS science instruments they simulate.

The selection of the 8 equipment items to be deleted from the CEM3 testbed was

based on several factors. For example, the scaled weights of the SWlR Radiator, TIR

Radiator, MOPITT Radiator, and CERES1 equipment were all below 6 Ibs and had a

negligible effect on the testbed inertia properties. Other payloads with large masses

such as the Propulsion Module (PM) and Reaction Wheel Assembly (RWA) were also

eliminated. The mass and inertia properties associated with these two payloads are

accounted for by the additional weight of the primary structure, gimbals, and control

actuator hardware.

Several of the retained payloads are offset from the CEM3 primary structure using

payload towers in order to more accurately locate masses at their proper c.g. locations.

These towers are simply one or two bays of truss structure. Locating the CEM3 mass

simulators as close as possible to their true c.g. coordinates is critical for matching the

overall scaled inertia properties of the EOS AM-1 spacecraft. It should be noted that

for the CEM3 testbed, the Tape Recorder (TR) payload was divided into two identical

mass simulators which have the same effective combined c.g. location. This change

was driven by concerns regarding strut count since significantly more truss hardware

would be required to position a single TR mass simulator at its true c.g. location.

3.3 APPENDAGES

The design of the appendages was driven by the need to meet the frequency and Kb

requirements in Tables 2-3 and 2-4. Correctly matching the appendage mass and c.g.

was also important in matching the overall scaled spacecraft inertia.
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Table 3-4.

PAYLOAD

DESCRIPTION

VNIR

SWIR

Simulated EOS AM-1

SIMULATOR

TYPE

Gimbal

Gimbal

Payloads

SCALED EOS

WEIGHT (LBS)

40.98

29.11

MISR Gimbal 29.77

CERES2 Rigid Mass 28.47

26.26Rigid Mass

Rigid Mass 32.18

COMM

GN&C Bench & Shell

MODIS Rigid Mass 51.87

MOPITT Rigid Mass 45.52

PMAD Rigid Mass 69.16

TIR Rigid Mass 35.94

Rigid Mass

Total:

TR
I

72.30

461.56

NOTE: Each CEM3 Gimbal Weighs 90.5 Ibs

Table 3-5.

PAYLOAD

DESCRIPTION

Deleted EOS AM-1 Payloads

SCALED EOS

WEIGHT (LBS)

Battery Panel 35.10

CERES1 2.51

DDL Panel 11.11

MOPITT Radiator 5.86

Propulsion Module 89.20

RWA 25.28

SWlR Radiator 4.76

TIR Radiator

Total:

4.87

178.69
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The two flexible appendages used on the CEM3 testbed to simulate the EOS AM-1

solar array and high gain antenna are the deployable mast originally designed for the

CEM Phase-2 testbed and a newly developed HGA simulator. These two CEM3

appendages approximate the low-frequency dynamics of the EOS appendages and

simulate the modal interaction between the appendage and bus structure. The mast is

cantilevered horizontally from a 2-axis gimbal stand mounted on the -Y side of the

CEM3 testbed while the HGA mounts directly to strut node balls and is cantilevered

vertically upward in the CEM3 -Z axis. Both CEM3 appendages have undergone

fixed-base modal testing to verify the dynamic properties of the structures, resulting in
correlated math models.

3.3.1 Solar Array Simulator Description

A photograph of the actual deployable mast hardware designed and fabricated by

AEC-Able Engineering Company, Inc. is shown in Figure 3-10. The aluminum mast is

a three Iongeron, spherical joint design with a deployed length of 180 inches and a

diameter of 6.980 inches. To create the CEM3 solar array simulator, a tip weight is

added to the mast as shown in Figure 3-11. The weight can be varied from 0 to 50 Ibs

in 10 Ib increments to adjust the mast frequency and resulting modal coupling (Kb)

with the testbed. The mast length can also be shortened if necessary by removing

individual bays of truss. A detailed description of the CEM2 mast hardware in terms of

dimensions, material types, and load carrying capability is provided in Table 3-6.

A comparison of the lengths of the EOS AM-1 solar array and the CEM2 mast (Figure

3-12) shows that the CEM2 mast is approximately one-half the length of the scaled

EOS solar array (180" vs. 351"). In terms of width, the EOS blanket measures 196

inches across compared to the mast diameter of only 6.98 inches. Fortunately, even

though the mast overall geometry does not closely match EOS, when equipped with a

40-1b tip weight the mast has approximately the same scaled weight and c.g. location

as the EOS solar array. This similarity enables the existing CEM2 mast to adequately

simulate the scaled dynamic behavior of the EOS solar array.

3.3.2 Solar Array Simulator Modal Test

A modal survey was conducted on the CEM2 deployable mast equipped with a 40-1b

tip weight in order to quantify the dynamic characteristics of the solar array simulator

and provide the modal parameters needed to correlate the MSC/NASTRAN analytical

model. The mast was tested in a vertically cantilevered configuration using a

floor-anchored steel fixture (Figure 3-10) rather than in a horizontally mounted

configuration similar to what its orientation will be on the CEM3 testbed. Horizontal
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Figure 3-10 AEC-Able Deployable Articulated Mast Hardware
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Figure 3-11. AEC-Able Deployable Articulated Mast Tip Weight
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Table 3-6. CEM Mast Description

CHARACTERISTIC

MAST TYPE

VALUE

Triangular, Articulated

2024-T4 Aluminum, 303 SSPRIMARY STRUCTURAL MATERIALS

LONGERON and BATTEN TUBING 0.250 in. OD, 0.020 in. Wall

DIAGONAL CABLE 0.047 in. OD, 7x19 SS

JOINTTYPE Ball & Socket
i

MAST DIAMETER 6.980 in.

BAY SIDE 6.045 in.

BAY LENGTH 5.443 in.

ANGLE, BA'I-FEN-TO-DIAGONAL 42.0 deg

NOMINAL MAST LENGTH 180 in.

NOMINAL NUMBER OF BAYS 3 3

LONGERON BUCKUNG LOAD 415 Ib

MAST AXIAL BUCKLING LOAD (FIXED/FREE)

MINIMUM BENDING STRENGTH

236 Ib

2170 in-lb

SHEAR STRENGTH 28 Ib

TORSIONAL STRENGTH

NOMINAL WEIGHT

146 in-lb

10.6 Ib
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testing would have required the use of a zero-g suspension system (not readily

available at the time of testing) to effectively off-load the 40 Ib-tip weight. The

geometric stiffness effects on the low-frequency mast modes due to gravity preload

along the length of the mast are accounted for in the finite element analysis.

Measured frequency, damping, and mode shape data were obtained for fixed-base

mast modes up to 55 Hz.

To determine the locations and number of accelerometers needed to adequately

describe the dynamic response of the cantilevered mast during a modal survey,

pretest Test-Analysis Models (TAM's) were generated using the Guyan static reduction

method 14. A TAM is a reduced order analysis model of the full finite element model

whose Degrees-of-Freedom (DOF) are identical to the accelerometer DOF measured

during a modal survey. The geometric stiffness effects were included in the TAM

model since an updated TAM mass matrix is required to compute post-test

cross-orthogonalities between test and analytical modes.

A set of 33 accelerometers were selected for the modal test with the resulting pretest

TAM vs. FEM comparison summarized in Table 3-7. Twenty-seven Kistler

accelerometers were distributed along the mast length and tip weight along with six

piezo-resistive ENDEVCO accelerometers used to accurately capture the

low-frequency first bending modes. The accelerometer set measured radial,

tangential, and axial motion. Mass associated with instrumentation hardware (2.665

Ibs) such as accelerometers, force gauges, and cables was accurately represented in

the analytical test model.

The pretest cross-orthogonality and frequency comparisons between the TAM and

FEM (Table 3-7) show excellent agreement for the first nine cantilevered modes below

49 Hz. The cross-orthogonality values are all above 0.95 and the frequency errors are

less than 1.2% except for the second torsion mode (mode 7) which has a frequency

error of 3.2%. The fourth mast bending modes at approximately 50 Hz have

diminished cross-orthogonality and frequency comparisons between the TAM and

FEM indicating that the sensor set does not adequately capture these modes.

A modal survey on the cantilevered mast structure was performed by subjecting it to a

series of burst random excitation tests in both the base-band and zoom modes. A

single force shaker was used to excite the fixed-base modes of the cantilevered

structure. Two different shaker attachment points were used during testing in order to

adequately excite the all the structural modes up to 55 Hz. Figures 3-10 and 3-11

show the two mast shaker excitation points used, one near the base of the mast and

the other on the tip weight. Tests were conducted at various excitation levels to assess
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the linearity of the mast dynamic behavior as a function of input amplitude. The higher

level excitations resulted in observed tip weight lateral displacements of approximately
1 inch.

Based on the measured mode shape and frequency results obtained from the modal

survey, the mast finite element model was correlated using the SDRC CORDS2

Program 15. The CORDS2 Program uses design sensitivity and optimization methods

to identify model updates which minimize frequency differences between test and

analysis. Several iterations were required to obtain the final correlated model whose

cross-orthogonality and frequency comparisons with measured test data are

summarized in Table 3-8. The cross-orthogonality and frequency agreement for the

first and second bending mode pairs (modes 1&2 and 4&5), the first and second

torsion modes (modes 3 and 7), and the first axial mode (mode 6) are excellent with

cross-orthogonalities of 0.98 or better and frequency errors ranging from 0.1% to

-3.5%. The higher order mast bending mode pairs (modes 8-11) at approximately 29

Hz (B-3) and 52 Hz (B-4) show excellent frequency agreement (less than 2.3% error)

but only marginal cross-orthogonality results (0.79 to 0.86). The marginal

cross-orthogonality results associated with the fourth bending mode pair are not

unexpected considering the accuracy of the pretest TAM for the higher order modes.

The resulting equivalent bending rigidity (El) corresponding to the correlated mast

model is 3.3E+06 Ib-in^2 compared to a design value of 3.1E+06 Ib-in^2. It should be

noted that the TAM mass matrix used for the final cross-orthogonality comparison was
based on the correlated full FEM model.

As part of the modal survey, modal damping values were also extracted from the

measured data as shown in Table 3-8 where a value of 100% represents a critically

damped structure. Nominal damping values (0.0051 g-rms input) ranged from 0.24%

to 1.53% with the highest value corresponding to the second torsion mode. The

lowest damping values were observed for the low frequency modes (B-1 & T-l).

Linearity tests performed by varying input amplitudes (from 0.00051 to 0.0171 g-rms)

indicated variations in measured damping levels as a function of input amplitude for

the first bending mode pair but not for the first torsion mode whose damping remained

constant. Linearity tests were performed for only the first order modes. In terms of

frequency linearity, the mast responses for the first order modes were quite linear over

the input amplitude range, exhibiting variations of less than 1.5%.

3.3.3 High Gain Antenna Design

A photograph of the CEM3 high gain antenna which is comprised of a flexible boom

and a rigid tip weight is shown in Figure 3-13. The boom has a C-channel
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Figure 3-13. CEM3 High Gain Antenna Hardware
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cross-section with different bending stiffness properties about each axis. Using an
open C-channel rather than a closed rectangular section enabled the desired
cross-sectional properties to be obtained using an off-the-shelf piece of hardware.
Since the HGA simulator was designed and fabricated especially for the CEM3
testbed, the length and weight dimensions are based on scaled EOS values and
therefore are a near perfect match. The cantilevered length from the base of the HGA
boom to the c.g. of the 26.5 Ib tip weight is 100 inches, identical to EOS.

3.3.4 High Gain Antenna Modal Test

A modal survey was performed on the HGA structure in order to characterize the

dynamic behavior of the appendage for use in math model correlation. The antenna

was mounted to a single bay of truss in a vertically cantilevered configuration (Figures

3-13 and 3-14) analogous to its configuration on the CEM3 testbed. Even though the

geometric stiffness effects on the first HGA bending modes due to gravity preload are

relatively minimal, the effects are still accounted for in the finite element analysis.

Measured frequency, damping, and mode shape data were obtained for the

cantilevered HGA assembly up to 65 Hz.

Identical to the procedure followed during the mast modal survey, a series of TAM's

were generated to determine the locations and number of accelerometers needed to

adequately describe the few first modes of the cantilevered antenna structure. A set of

16 accelerometers were used with the resulting pretest TAM vs. FEM comparison

summarized in Table 3-9. Five bi-axial accelerometer blocks were distributed along

the antenna length and 2 tri-axial accelerometer blocks were mounted on the rigid tip

weight. Mass associated with instrumentation hardware (0.387 Ibs) was accurately

represented in the analytical test model.

The pretest cross-orthogonality and frequency comparisons between the TAM and

FEM (Table 3-9) show a perfect match for the first bending mode pair (modes 1 and 2)

and the first torsion mode (mode 3). The TAM for the second bending mode pair

(modes 4 and 5) matches the full FEM quite well with cross-orthogonalities of 0.94 and

0.98 and frequency errors below 2.1%. The third bending modes (modes 6 and 7)

which occur above 50 Hz do not compare well, indicating that the sensor set does not

adequately capture the higher order bending modes. Since the purpose of the modal

survey was to identify the first few modes of the cantilevered HGA in a timely manner,

additional effort was not performed to improve the TAM for modes 6 and 7.

In order to accurately model the important shear center offset and neutral axis physical

properties associated with the HGA boom C-channel cross-section, the finite element
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model of the HGA boom was built using plate elements. Beam elements with shear

center offsets were not a modeling option since they cannot be used in combination

with geometric stiffness in MSC/NASTRAN.

A modal survey of the cantilevered HGA structure was performed by subjecting it to a

series of burst random excitation tests in both the base-band and zoom modes. A

single force shaker mounted near the base of the HGA boom (Figure 3-13) was used

to excite the fixed-base modes of the cantilevered structure up to 65 Hz. Based on the

measured mode shape and frequency results obtained from the modal survey, the

HGA FEM model was correlated using the CORDS2 Program. Several iterations were

required before achieving the final correlated model results summarized in Table 3-10.

The cross-orthogonality and frequency agreement for the first bending mode pair

(modes 1 and 2) and the first torsion mode (mode 3) are excellent with

cross-orthogonalities of 0.98 or better and frequency errors below 1.5%. The second

bending mode pair (modes 4 and 5) at 22 Hz have cross-orthogonality values of 0.90

and 0.92, and frequency errors of -1.6% and 0.9%, respectively. The test results

indicate noticeable coupling between these two modes which resulted in the need for

linear recombination 16 as part of the correlation effort. The test vs. FEM results for the

third bending mode pair are poor which is not unexpected given the accuracy of the

pretest TAM for these higher order modes. The TAM mass matrix used for the final

cross-orthogonality comparison was based on the correlated full FEM model.

As part of the modal survey, modal damping values were also extracted from the

measured data (Table 3-10) where a value of 100% represents a critically damped

structure. The results show the antenna assembly to be very lightly damped with

damping values ranging from 0.06% to 0.24% for the seven modes extracted in the

survey.

3.4 SUSPENSION SYSTEM

Simulating the on-orbit low-frequency dynamic characteristics of the EOS AM-1

spacecraft using the CEM3 testbed in a 1-g laboratory environment can be difficult due

to the presence of gravity loads. The advanced suspension devices which off-load

gravity and approximate free-free boundary conditions result in six low-frequency

testbed rigid-body suspension modes. The interaction between these suspension

modes and the testbed flexible body modes must be minimized in order to correctly

simulate free-free dynamics and the proper coupling between the bus and

appendages which is critical for the low-frequency control experiments.
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The CEM3 testbed is suspended from the NASA/LaRC Building 1293 Space Frame

using five CSA zero-g suspension devices originally developed for the Phase-2

testbedS, 8. The advanced suspension devices provide vertical isolation, while the

long cables provide horizontal isolation. These suspension devices have a vertical

stroke of +/- 3 inches and an adjustable active stiffness setting ranging from 0.1 Ib/in to

2.0 Ib/in. Approximately 6 Ibs of active mass is associated with the vertical motion of

each suspension device, which is negligible compared to the total testbed weight. The

CEM3 testbed is hung from the devices using 3/16 inch stainless steel cables. A total

of four devices are used to off-load the CEM3 truss primary structure and one device is

used to off-load the mast tip weight since the strength of the deployed mast is not

sufficient to support a 40-1b tip weight when cantilevered in a horizontal orientation.

The locations of the five cable attachment points on the CEM3 testbed are illustrated in

Figure 3-15.

The four truss attachment points on the CEM3 primary structure are designed to

straddle the testbed center-of-gravity which results in each device equally supporting

approximately one-quarter of the testbed weight. These loads are well within the 500

Ib capability of each suspension device. Strut axial load calculations performed on the

testbed suspended in 1-g with assumed worst case dynamic loads indicate no strut

strength or buckling issues for the proposed suspension configuration. The vertical

attachment locations of the truss cables to the testbed are approximately 10 inches

above the testbed c.g. while the mast cable attachment point is located on the outer

radius of the tip weight vertically above its c.g. The cables used to support the truss

are 788 inches in length while the mast cable is 783 inches in length.

Suspension stiffness, locations of the cable attachment points relative to the testbed

c.g., and cable length are the three key suspension parameters which drive the CEM3

rigid-body suspension mode frequencies. These are the suspension system

parameters which can be tuned to meet the desired rigid-body suspension modes

frequency requirement of 0.20 Hz or less. All three of the rigid-body rotational mode

frequencies (roll, pitch, and yaw) are a function of the cable attachment locations with

the roll and pitch frequencies being especially sensitive to the vertical height of the

truss attachment points relative to the testbed c.g. In terms of suspension stiffness, the

active stiffness settings affect only those modes with vertical testbed motion which are

the roll, pitch, and vertical plunge modes. The lateral and fore-aft translational

suspension modes are simple pendulum modes whose frequencies are determined

by cable length independent of attachment location or device stiffness.
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4.0 ANALYTICAL PERFORMANCE COMPARISONS

Many intermediate FEM analyses were conducted throughout the iterative CEM3

testbed development in order to evaluate the predicted performance of different

designs. In this section the dynamic fidelity of the CEM3 testbed is evaluated by

comparing the suspended CEM3 mass property, dynamics, and appendage

interaction FEM results with the corresponding scaled on-orbit EOS AM-1 spacecraft

FEM results (geometric fidelity was discussed previously in Section 3.0). The CEM3

FEM model used to generate the results described in this section reflects the CEM3

configuration at the time of delivery to NASA/LaRC. It also includes updated

component FEM models incorporating the test results for the stock tube diagonal

struts, solar array simulator, and HGA hardware described in Section 3.0.

The performance comparisons are divided into four subsections. Section 4.1

compares the overall mass properties of the CEM3 and EOS AM-1 spacecraft.

Section 4.2 describes free-free dynamic analyses which were initially used to evaluate

the first primary structural modes of the CEM3 testbed design. Section 4.3 describes

suspended dynamic analyses which were conducted to evaluate and compare the

fidelity of the low-frequency appendage interaction. Additional suspension device

stiffness sensitivity analyses that were performed to "tune" the zero-g suspension

system are also described. Finally, Section 4.4 provides a summary comparison of all

of the key CEM3 testbed characteristics and the corresponding EOS AM-1 parameters.

4.1 MASS PROPERTIES COMPARISON

The system mass properties of the free-free CEM3 model are compared with the

scaled EOS AM-1 mass properties in Table 4-1. The CEM3 results are based on the

MSC/NASTRAN FEM model representation of the testbed, which includes the control

actuators and electronics hardware at truss locations defined by NASA/LaRC. The

FEM model does not include weight associated with suspension and instrumentation

hardware which may be added for specific experiment configurations.

For the purposes of simulating the on-orbit dynamics of the EOS AM-1 spacecraft, the

most important mass properties are the diagonal inertias (Ixx, lyy, Izz) and the location

of the c.g. Comparison of the diagonal inertias in Table 4-1 indicates excellent

agreement between the CEM3 model and the scaled EOS AM-1 spacecraft. Each of

the three CEM3 diagonal inertias are within 2% of the EOS target values. Comparison
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Table 4-1. Mass Property Comparison

MASS

PROPERI3f

Total Weight

Structure Wt.

Payload Wt.

X-CG

Y-CG

Z-CG

IXX

lyy

EOS AM-1

(SCALED)

1 ,O50

410

640

157.33

-3.13

-8.21

4.35E+06

6.73E+06

CEM3

(FREE-FREE)

1,425

762

663

171.86

-6.37

-0.04

4.39E+06

6.84E+06

CEM3/EOS

RATIO

1.36

1.86

1.04

1.01

1.02

Izz 8.14E+06 8.10E+06 1.00

Ixy -1.23 E+05 -1.82E+04 0.15

Ixz 1.63E+05 4.18E+05 2.57

3.37E+05lyz 8.04E+04 0.24
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of the c.g. locations reveals that the Y and Z c.g. locations agree within a few inches,

but the X c.g. location is about 14 inches too far forward. These results are considered

acceptable, with the X c.g. difference being due to the fact that the aft end of the CEM3

primary structure was shortened due to the limited supply of CEM2 struts.

Comparison of the total weights in Table 4-1 shows that the CEM3 testbed is 36%

heavier than the scaled EOS AM-1 model (1425 Ibs vs. 1050 Ibs). While the CEM3

payload weights match the EOS payload weights almost exactly, the CEM3 primary

structure, appendages, and thruster hardware are 352 Ibs heavier than the

corresponding EOS components. Much of the difference is attributed to the difficulty of

matching the stiffness performance of the graphite/epoxy composite EOS AM-1

primary truss structure using 10-inch bays of aluminum truss. Fortunately, since it is

the rotational inertias about the control system axes and not the translational masses

which affect pointing performance, the additional mass does not pose a problem for

pointing experiments.

Comparison of the cross products of inertia (Ixy, Ixz, lyz) in Table 4-1 indicates that the

CEM3 values differ significantly from the scaled EOS properties. These differences in

inertia cross products are driven by the added weight associated with replacing the

VNIR, MISR, and SWIR payload masses of 40.98 Ibs, 29.77 Ibs, and 29.11 Ibs,

respectively, with 2-axis gimbals weighing 90.5 Ibs each. Also, slight differences

between the attachment locations of the CEM3 and EOS appendages adversely affect

the inertia cross products. Matching the cross products of inertia is of secondary

importance as long as they are small compared to the diagonal inertias. Table 4-2

verifies that the off-diagonal inertia ratios are indeed small for both the CEM3 testbed

and the EOS AM-1 spacecraft.

For completeness, a mass property spreadsheet documenting the individual weight,

c.g., and inertia properties of each hardware component in the CEM3 model is

included in Table 4-3. Due to the large strut count associated with the CEM3 truss

structure, the individual mass properties of all the strut and node ball hardware are

expressed as a single equivalent mass. Future changes in mass properties resulting

from modifications to component weights and locations can easily be analyzed using

the spreadsheet.

Overall, the most important EOS AM-1 mass properties are matched in the CEM3

testbed. The 1,425-pound testbed weight is well within the 2,000-pound capability of

the suspension system, with margin available for added CSI equipment, experiments,

and instrumentation.
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Table 4-2. Ratio of Cross Products to Diagonal Inertias

RATIO TEMPLATE

X

Y

Z

X Y Z

Ixx/Ixx

Ixy/Ixx & Ixy/lyy

Ixz/Ixx & Ixz/Izz

Ixy/Ixx & Ixy/lyy

lyy/lyy

lyz/lyy & lyz/Izz

Ixz/Ixx & Ixz/Izz

lyz/lyy & lyz/Izz

Izz/Izz

X

Y

Z

EOS AM-1 RATIOS

X Y Z

1.00 -.03 &-.02 .04 & .02

-.03 &-.02 1.00

.04 & .02 .05 & .04

.05 & .04

1.00

CEM3 RATIOS

X

Y

Z

X Y

1.00 -.004 &-.003

-.004 & -.003 1.00

.10 & .05 .01 & .01

Z

.10 & .05

.01 & .01

1.00
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4.2 FREE-FREE DYNAMIC ANALYSIS

As an intermediate step in the design process, free-free modal analyses of the CEM3

testbed were conducted to calculate the frequencies of the higher frequency CEM3

primary structure modes which are virtually unaffected by the low-frequency

suspension system. While the proper comparison with the EOS AM-1 spacecraft is

made using the suspended CEM3 modes, the free-free results are included here for

informational purposes since the analyses were an integral part of the design process.

They may also be compared with the suspended analysis results provided in the next
section.

Table 4-4 lists the first 26 free-free CEM3 modes resulting from the analysis. The first

system mode of the testbed occurs at 23.97 Hz (mode 25) and is a torsion mode of the

truss primary structure as illustrated in Figure 4-1. This result compares well with the

first structural system mode of the EOS AM-1 spacecraft, which is at about 23 Hz.

Successfully meeting this frequency goal would not have been possible without the

addition of the stock tube diagonal struts to augment the torsional stiffness of the

primary structure.

The modes which occur prior to the first CEM3 primary structure system mode are

mainly rigid-body modes, appendage modes, and local gimbal payload modes.

Figure 4-2 illustrates the local gimbal modes which are rotational and plunge modes of

the gimbaled payload mass at 14 and 22 Hz, respectively. Note that the closed-loop

control of the 2-axis gimbals should eliminate the rotational payload mode at 14 Hz;

therefore, this is not considered a true local payload mode. The first CEM3 payload

modes are thus the gimbal plunge modes at 22 Hz. Though the EOS AM-1 design

goal is for the payload modes to be above 35 Hz, this result is considered acceptable

as the gimbal plunge mode is an artifact of using the existing CEM2 gimbals in the
CEM3 testbed.

4.3 SUSPENDED DYNAMIC ANALYSIS

This section evaluates the overall dynamic fidelity of the CEM3 testbed by comparing

the final suspended CEM3 FEM modal analysis results with those from the scaled on-

orbit EOS AM-1 FEM model. Section 4.3.1 describes the suspension analysis along

with the modal results and mode shape plots. Section 4.3.2 specifically addresses the

comparison of the appendage interaction characteristics. For informational purposes,

Section 4.3.3 summarizes suspension system sensitivity analyses which were used to

tune the stiffness gain of the suspension devices.
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Table 4-4. CEM3 Free-Free Modal Analysis

MODE No.

1 6

7-10

11

12

13

14

15-17

18

19

20

21

22

23

24

25

26

FREQ (Hz)

0.00

< 2.00

2.87

5.74

9.95

10.05

13.8- 14.1

21.48

22.00

22.12

22.48

23.14

23.41

23.50

23.97

24.88

DESCRIPTION

Rigid Body Modes

HGA & SA B-1

HGA T-1

SA T-1

SA B-2-Z

SA B-2-X

Gimbal Payload Rx

!Gimbal Payload Plunge

Gimbal Payload Plunge

HGA B-2-X

Gimbal Payload Plunge

PMAD/HGA Bending

HGA B-2-Y

Towers/PMAD Bending

System 1st Torsion (T-l)

System Bending/Torsion
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Figure 4-2. Local Gimbal Payload Modes

4-9



4.3.1 Suspension Analysis Results

Suspension analyses were conducted with the CEM3 testbed suspended from five

zero-g suspension devices as described in Section 3.4. The modal analyses,

performed using MSC/NASTRAN Solution 106, included suspension system

dynamics and geometric stiffness effects due to gravity preloads. Both parameters

have a significant effect on the testbed behavior at low frequencies and therefore must

be accurately modeled. At higher frequencies the potential importance of these

parameters is significantly reduced, as the gravity-induced effects become negligible

and the suspension modes become further separated from the testbed flexible-body

modes.

The results of the final eigensolution computed for the baseline CEM3 testbed in its

suspended configuration are summarized in Table 4-5. The first 26 modes shown are

comprised of rigid-body suspension modes, lower order appendage modes, local

gimbal modes, and testbed structural modes. The six rigid-body suspension modes

(modes 1 - 6) are all successfully tuned below the 0.20 Hz requirement, using the

approach discussed in Section 3.4. In addition, the first system structural mode (mode

25) meets the 23 Hz design goal. A total of 353 modes are predicted up to 200 Hz,

excluding local cable modes.

Mode shape plots of the important low-frequency appendage modes which dominate

the CEM3 dynamic performance are shown in Figures 4-3 through 4-6. Mode 7 is first

bending of the solar array simulator about the testbed yaw axis (B-l-Z) which couples

with testbed rigid-body yaw rotation. Modes 8 and 10 are combined first bending of

the solar array simulator and HGA appendages about the CEM3 roll axis (B-l-X)

which introduces significant testbed rigid-body roll motion. Mode 9 is HGA bending

about the CEM3 pitch axis (B-l-Y) and results in very little testbed rigid-body response

as shown in Figure 4-5. The testbed rigid-body responses are a result of the testbed

inertias reacting the torques generated by motion of the appendage tip weights, the

magnitude of which is quantified by the gain Kb. Based on the discussions in Section

2.2, modes 7 and 9 correspond to the 2-body problem while modes 8 and 10

correspond to the three-body problem. The coupling of the HGA and solar array

motion in the latter reflects the importance of scaling both appendages consistently.

Note that for the purpose of expediting the suspension analysis, local cable modes

and grounding stiffnesses associated with external air lines and wiring attached to the

testbed have been ignored. Cable "string" modes which might couple with the

structure in the test lab can be de-tuned or replaced with lighter Kevlar cables as
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Table 4-5. CEM3 Suspension Analysis Modes

MODE

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

FREQ (Hz)

0.111

0.111

0.118

0.133

0.190

0.199

0.716

0.815

1.258

1.517

2.874

5.400

9.94

10.01

13.89

13.91

14.10

21.51

22.02

22.19

22.46

DESCRIPTION

RB Pendulum (Lateral)

RB Pendulum (Axial)

RB Plunge

RB Yaw

RB Pitch

RB Roll

SA B-1-Z

SA B-1-X

HGA B-1-Y

HGA B-1-X

HGA T-1

SA T-1

SA B-2-Z

SA B-2-X

Gimbal Payload Rx

Gimbal Payload Rx

Gimbal Payload Rx

Gimbal Payload Plunge

Gimbal Payload Plunge

HGA B-2-X

22 23.17

23 23.43 HGA B-2-Y

24 23.54 Towers/HGA Bending

25 23.88

26 24.73

44.84

199.40

53

353

Gimbal Payload Plunge

PMAD/HGA Bending

System 1st Torsion (T-l)

System Bending/Torsion

Local System Diagonal Strut
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needed. The external air lines and electrical cables should be added to the FEM

model at a later date according to the specifics of each test configuration.

4.3.2 Appendage Mode Interaction Comparison

Using the CEM3 suspended modal data discussed in the previous section, open-loop

structural frequency response functions were calculated to evaluate how closely the

suspended CEM3 testbed simulates the overall appendage mode dynamic interaction

of the on-orbit EOS AM-1 spacecraft. Comparison plots of the magnitude of the

open-loop FRF from 0.01 Hz to 200 Hz are shown in Figures 4-7 through 4-9 assuming

a constant modal damping value of 0.5%. The sensor DOF's correspond to the GN&C

pallet for both models while the actuator DOF's are located on the reaction wheel

assembly and the gas-jet thruster plate for the EOS AM-1 and CEM3 testbed,

respectively. The magnitude of the EOS AM-1 response has been scaled according to

the 1/10:1 multiple scaling method (A) described in Section 2.3. The FRF peaks

pertaining to the rigid-body suspension modes and the low-frequency appendage

modes are individually labeled on each plot.

In the region below 1 Hz, the CEM3 roll (Figure 4-7), pitch (Figure 4-8), and yaw

(Figure 4-9) frequency response functions display the same basic characteristics as

the scaled EOS AM-1 FRF's, with two exceptions. First, each CEM3 testbed FRF has a

peak associated with a low-frequency suspension mode, as predicted in Section 2.2.

Inspection of the CEM3 curves clearly shows that the suspension modes are

uncoupled from the appendage modes. Second, as was intended with the approach

described in Section 2.4 using scaling method (C), there is a approximately a factor of

two difference between the EOS and CEM3 appendage frequencies, while the relative

magnitude and frequency spacing are preserved.

The key appendage dynamic interaction parameters for the low-frequency appendage

modes (Sections 2.2 and 2.4) were developed from the FRF's using Equation 2-8 and

are compared in Tables 4-6 through 4-8. Tables 4-6 and 4-7 show the overall good

agreement between the scaled EOS AM-1 and CEM3 appendage frequencies and

bending mode gains (Kb's). Table 4-8 shows that the relative frequency separation

ratios are consistent for both the HGA and solar array simulator appendages.

Figures 4-7 through 4-9 show that in the region above 1 Hz, the mass lines of the

CEM3 and EOS AM-1 are nearly identical in all three FRF's. This reflects the excellent

match in the mass inertia properties (Ixx, lyy, Izz ) mentioned in Section 4.1.

Comparisons of the high-frequency responses in the FRF's reveal a high

concentration of modes from 23 - 200 Hz in both the CEM3 and EOS AM-1 models.
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Table 4-6. Appendage Interaction Summary

Rofl

(B-l-X)

SA

HGA

Freq (Hz)

Kb

Freq (Hz)

Kb

EOS-AM1

Full Scale

0.380

0.61

0.660

0.61

EOS AM-1

Scaled -(C)

0.760

CEM3

0.815

0.61 0.81

1.320 1.517

0.61 0.73

Pitch HGA Freq (Hz) 0.501 1.002 1.258

(B-l-Y) Kb 0.07 0.07 0.07

Yaw SA Freq (Hz) 0.295 0.590 0.716

(B-l-Z) Kb 0.33 0.33 0.35

Table 4-7. CEM3/EOS Frequency and Kb Ratios

RB Axis Appendage

ROLL SA

ROLL HGA

PrTCH

YAW

HGA

SA

CEM3 / EOS Ratio

Frequency

Full Scale

2.14

2.30

2.51

2.43

Scaled - (C)

1.07

1.15

I 1.26

1.21

Kb

1.33

1.19

1.00

1.06

Table 4-8. Bending Mode Pair Frequency Separation Ratios

SPACECRAFT

MODEL

MODE PAIR

HGA

B-1 -X/B-1 -Y

EOS AM-1 1.32 1.29

1.21CEM3 1.14
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These correspond to the structural modes and higher order appendage bending

modes in the models. Specifically matching these modes was impractical and not part

of the current effort. However, the overall modal densities appear similar.

Overall, the dynamic comparison of the open-loop FRF's and the appendage

frequencies and Kb's is very good considering that the CEM3 testbed was

reconfigured using existing CEM2 hardware. The results presented reflect an iterative

effort in the adjustment of the relatively few unconstrained variables in the design

equation (i.e. the HGA design and the size of the solar array tip weight) to minimize the

differences between the key CEM3 and scaled EOS AM-1 appendage dynamic

interaction parameters.

4.3.3 Suspension Mode Sensitivity Study

Parametric studies were conducted to assess the sensitivity of the roll, pitch, and

plunge rigid-body suspension mode frequencies to variations in suspension device

stiffness, which can be controlled using a gain setting. The pendulum and yaw modes

are uncoupled from vertical suspension motion and are therefore insensitive to the

suspension device stiffness.

The CEM3 roll mode frequency is significantly more sensitive to the suspension

stiffness setting of the device supporting the mast tip weight than to the others due to

the long moment arm associated with the mast. Restoring torques about the roll axis

are a function of the moment arm squared (T = Kr2). The suspension system effective

roll stiffness is dominated by the mast device which has approximately a 220-inch

moment arm with respect to the testbed c.g. In comparison, the four suspension

devices supporting the truss have only 25-inch moment arms. Figure 4-10 shows a

plot of rigid-body roll frequency as a function of mast suspension device stiffness,

assuming nominal truss suspension stiffness settings of 0.50 Ibs. The figure indicates

that the suspension stiffness at the mast tip must be 0.10 Ib/in or less in order to

achieve a roll frequency below 0.20 Hz.

Additional studies were also performed to understand the sensitivity of the pitch and

plunge modes to variations in suspension stiffness. Table 4-9 shows the change in

frequency associated with decreasing the four truss suspension device settings from

0.50 Ib/in to 0.25 Ib/in. The mast device stiffness has only a small effect on the pitch

and plunge modes compared to the truss devices, and therefore its stiffness was kept

constant at 0.50 Ib/in in this analysis. As expected, the results indicate a strong

sensitivity of vertical plunge mode frequency to suspension stiffness. The pitch mode

frequency is much less sensitive to changes in truss suspension stiffness.
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0.30

0.25

=.

==

i 0.20

0.15 , , , ' '
0.0 0.1 0.2 0.3 0.4 0.5

Truss Suspension [K] = 0.50 Ib/In

0.6

Mast Tip Suspension [K] (Ib/in)

Figure 4-10. Roll Mode Frequency vs. Mast Suspension Stiffness

Table 4-9.

TRUSS [K]

0.50

0.25

Truss Suspension Stiffness Sensitivity

SUSPENSION MODE (HZ)

PLUNC_ PITCH

0.121 0.191

0.087 0.176

Mast Tip [K] = 0.50 Ib/in
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More than one unique set of suspension stiffness settings can be selected which result

in suspension mode frequencies below 0.20 Hz. For the CEM3 testbed, it was

decided to use the supplier-recommended nominal stiffness value of 0.50 Ib/in for the

truss devices and adjust the mast device stiffness setting as needed to achieve the

0.20 Hz rigid-body suspension frequency requirement. This resulted in the 0.10 Ib/in

stiffness setting for the suspension device supporting the mast tip weight. In theory,

the stiffness setting of this suspension device should be set as low as possible in order

to minimize interaction with mast tip motion.

4.4 CEM3 and EOS AM-1 Comparison Summary

An overall comparison of the CEM3 and scaled EOS AM-1 properties is provided in

Tables 4-10 and 4-11. The most important parameters are shaded in gray, based on

the objectives established by NASA/LaRC.

The results in Table 4-10 show good agreement for the overall bus geometry and the

high gain antenna. Because of the requirement to use the existing CEM2 mast, the

CEM3 solar array simulator is approximately half of the length desired for the testbed.

This difficulty was overcome by using a different scaling method for the appendage

design which preserved the important appendage dynamic interaction characteristics,

but at twice the frequency.

The total weight of the CEM3 testbed meets the requirement to be below 2,000 Ibs, but

exceeds the EOS AM-1 target value by 36%. This was a result of using existing

aluminum CEM2 struts to simulate the stiffness and frequency characteristics of the

graphite/epoxy composite EOS AM-1 primary structure. Fortunately, this has no effect

on the pointing performance of the testbed, which involves mainly the diagonal

inertias. The results for the center-of-gravity show good agreement for the Y and Z c.g.

locations. The X c.g. difference of 14 inches is acceptable, a result of the fact that the

aft end of the CEM3 structure was shortened due to the limited supply of CEM2 struts.

Comparison of the diagonal inertias indicates excellent agreement between the CEM3

testbed and the scaled EOS AM-1 spacecraft values. In contrast, the cross products of

inertia show poor agreement. This is an acceptable compromise however, as in both

the EOS AM-1 spacecraft and the CEM3 testbed the inertia cross products are very

small compared to the diagonal inertias.

Table 4-10 also shows that the first system mode frequency of the bus is well-matched,

though the first payload mode is not. The latter is an artifact of the requirement to use
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Table 4-10. CEM3 Comparison with EOS AM-1 Spacecraft

PROPERTY
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

BUS

GEOMEmY

(in)

iZilililiiiiiiii!iiiiii!i!!i!ililiE_i_i_i_i_iiiiiiiiiiiiiiiiiiiiiii_i
i!iiiii!i]i!iiiiiiii_ii_iii!i_!!ii!!!i!i!iiiiiiiiiiii!i!iii!iii!i!i!i!i!i!!

.!i.!!!.i!i.i!iii!!iiiwiii!ii!!!ii!iiiiiiiiiiiiii_iii_i
_!i!!i_i_!iiiiiiiiiiii!iii!ii!!!ii_iii_i_i_i_i_iii!i_iii!iiiiiiii!iiiiiiii!i

SA L

HGA L

APPENDAGE

GEOMETRY (in)

MASS

PROPERTIES

(Ibf, in,

Ibf-in^2)

Total Weight

iiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiili
!i!!iiiiiiiii i!ii!iiiiiiiii
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii  iiiiiiiiiiiiiiiiiiii}iiiiiiii
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Ixy

Ixz

lyz
:i:Z:i:_:Z:Z:i:Z:Z:Z:i:Z:i:i:i:i:i:i:i:i:i:i:_:i:i:_:i:_:i:Z:i

!iii!i!iiiiiiii_i_i_iliiii!iiiiB_iiiiiiiiiiiiiiiiiiiiiiiiiiill

Payload

1st System

Freq (Hz)

EOS AM-1

Full Scale

256

68

78

351

100

10,500

157.3

-3.1

-8.2

4.35E+07

6.73E+07

8.14E+07

-1.23E+06

1.63E+06

3.37E+06

EOS AM-1

Scaled - (A)

256

CEM3

220

68 60

78 8O

351

100

1,050

157.3

-3.1

-8.2

4.35E+06

6.73E+06

8.14E+06

-1.23E+05

180

100

1,425

171.86

-6.37

-0.04

4.39E+06

6.84E+06

8.10E+06

-1.82E+04

4.18E+05

8.04E+04

1.63E+05

3.37E+05

23 23 24

223535

Table 4-11. CEM3 Comparison with EOS AM-1 Appendage Dynamics

Appendage Modes

EOS AM-1

Full Scale
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

SA Yaw iiii;ii_i_!_;i_)i_ili;iil;i;!; 0.295

_;iliiii!iii!!i!!iiii:::;'i_!::::iiiiiiiiiiiiiiiiiii!iiiii!!ililK_0.61

HGA Pitch iiiiiii_!ii!ili_i!iiiiiiii!i]_0.501
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

........... _._ H_IH I,L..............."
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

HGA Roll !iji.iji_iiS_liUii;ilil 0.660

o61

EOS AM-1

Scaled - (C) CEM3

0.590 0.716

0.33 0.35

0.760 0.815

0.61 0.81

1.002 1.258

0.07 0.07

1.320 1.517

0.61 0.73

4-24



the existing CEM2 gimbal design.

Finally, Table 4-11 shows that the important overall character of the appendage

dynamic interaction (in terms of frequency spacing, coupling, and modal gain) has

been preserved, as further evidenced in the open-loop structural FRF's shown in

Figures 4-7 through 4-9. While the appendage modal damping is also an important

parameter, these FRF's assume a constant critical modal damping of 0.5%. This

assumption should be revisited once modal tests of both the EOS AM-1 spacecraft and

the suspended CEM3 testbed have been completed.

Overall, all of the parameters shaded in gray show acceptable, if not good agreement,

reflecting a testbed with good fidelity in the important parameters of interest. In

conclusion, the CEM2 model hardware has been successfully reconfigured to provide

a ground testbed representation of the low-frequency dynamic characteristics of the

EOS AM-1 spacecraft. The effort was accomplished within the five-month schedule

and at a very minimal cost in new hardware. The resulting CEM3 testbed is now

available for use in experiments to develop CSI technology for jitter isolation and

suppression and the enhancement of overall spacecraft pointing performance.
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